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Abstract – The techniques to recycle and reuse plastics attract public attention. These public 
attraction and needs result in improving the recycling technique. However, the identification technique 
for black plastic wastes still have big problem that the spectrum extracted from near infrared radiation 
spectroscopy is not clear and is contaminated by noise. To overcome this problem, we apply Raman 
spectroscopy to extract a clear spectrum of plastic material. In addition, to improve the classification 
ability of fuzzy Radial Basis Function Neural Networks, we apply supervised learning based clustering 
method instead of unsupervised clustering method. The conditional fuzzy C-Means clustering method, 
which is a kind of supervised learning based clustering algorithms, is used to determine the location of 
radial basis functions. The conditional fuzzy C-Means clustering analyzes the data distribution over 
input space under the supervision of auxiliary information. The auxiliary information is defined by 
using k Nearest Neighbor approach. 
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1. Introduction 
 
These days, one key issue of mankind is the alteration of 

global weather patterns. The alteration of weather patterns 
is assumed to be caused by global warming. Many 
industrialized countries are trying to slow down global 
warming by reducing carbon dioxide emission. One way to 
reduce carbon dioxide emission as well as the pace of 
energy depletion is the waste recycling and reuse. 

Among the various municipal wastes generated every 
day around world, plastic is one of major material. It is 
natural that the techniques to recycle and to reuse plastic 
waste come into the spotlight. The various techniques to 
recycle and reuse plastic waste have been studied. The key 
issue in recycling and reusing plastic waste is the 
identification plastic material. When recycling and reusing 
plastic waste, the purity of the recycled plastic is very 
important. To obtain homogeneous plastic material, the 
identification technique is need.  

In 1995, Scott proposed an identification technique to 
identify polyethylene terephthalate (PET) and polyvinyl 
chloride (PVC) resins [1]. The identification technique 
proposed by Scott was based on Near Infrared Radiation 
(NIR) to extract absorbance spectra of each plastic material. 
In addition, a method to classify plastic resins into PET 
and PVC categories was proposed by Edward and 
Sommer in 2001 [2]. The classification system invented by 
Edward Sommer was based on NIR transmission spectra of 

each material. NIR spectroscopy equipment is applicable 
to classify and identify plastic material whose color is 
not black. However, when classifying and identifying 
black plastic which contains carbon black material, NIR 
spectroscopy equipment is not able to be used for a sensor. 
Because black colored materials can absorb light of all 
wave length. In this paper, to overcome the drawback of 
NIR spectroscopy, Raman spectroscopy technique is used. 
Nowadays, Raman spectroscopy technique is used in 
very wide applications such as pharmaceuticals, forensics, 
archeology, art, medicine, semiconductors in micro-
electronics, geology, planetary science and materials science 
[3]. It is well known that Raman spectroscopy is a 
spectroscopic technique exploiting the inelastic scattering 
phenomenon of monochromatic light, usually from a laser 
source [4]. Inelastic scattering means that the frequency of 
photons in monochromatic light from a light source 
changes by interacting with a material. 

In addition, in order to improve identification perfor-
mance of the identification system to classify some plastics 
into several categories, intelligent techniques such as fuzzy 
set theory and neural networks are used. Especially, fuzzy 
Radial Basis Function Neural Networks (fRBFNNs) are 
used as a classifier to identify black plastic wastes. In 
general, it is well known that these intelligent techniques 
have same advantages of dealing with the uncertain data 
and having learning ability. The locations of radial basis 
functions are very important to improve the classification 
performance of fRBFNNs. The locations of radial basis 
function are determined by using unsupervised clustering 
technique (usually fuzzy C-means clustering method). 
However, the unsupervised clustering method does not use 
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the auxiliary information that can be extracted the output 
space but the data distribution information extracted over 
the input space [5]. We use conditional fuzzy C-means 
clustering (cFCM) algorithm to define radial basis 
functions in supervised learning manner. The auxiliary 
information over the output space is defined by fuzzy k-
Nearest Neighbors (kNN) approach.  

In this paper, we make some experiments with several 
machine learning standard datasets to verify the proposed 
intelligent identification system. Finally, we use the 
proposed identification algorithm to classify black plastics 
into several material categories.  

 
 
2. Fuzzy C-Means Clustering and Conditional 

Fuzzy C-Means Clustering 
 
The location of radial basis functions is usually defined 

by using unsupervised method that analyzes the data 
distribution on the input space. In some literatures, this step 
to analyze the data distribution can be considered as the 
granulation of information [6-8]. The information granules 
are extracted by analyzing numerical data distribution and 
other source of experimental evidence. In this study, we 
use here Fuzzy C-Means clustering algorithm to extract 
fuzzy set. 

 
2.1 Fuzzy C-means clustering algorithms 

 
A brief explanation of the fuzzy clustering algorithm is 

outlined below. 
Let us consider a finite set of data 1 2{ , , , }N=X x x xL , 

m
k ÎÂx , 1 k N£ £ . The FCM clustering should optimize 

the following objective function.  
 

 
2

1 1
( ) , 1

c N
p

p ik k i
i k

J w p
= =

= - < < ¥åå x v  (1) 

 
The above optimization is carried out subject to the 

following constraints. 
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Here, k i-x v  is any distance between the data kx  

and the prototype iv . The parameter “p” used in the 
objective function denotes the fuzzification coefficient. 
“N” and “c” mean the number of data patterns and clusters, 
respectively. Usually, the fuzzification coefficient is 
equal to 2. The distance between data and prototypes is 
considered as the generalized weighted version of Euclidean 
distance as (3). 
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Here, sl

2 is the variance of the l-th variable, l =1,2,… , m. 
In fuzzy clustering procedure, the objective function is 

minimized by sequential optimization operation which 
optimizes the partition matrix and the associated prototypes. 

Partition matrix W: ikw is the i-th row, j-th column 
element of partition matrix W 
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Prototypes v1, v2, …, vc  
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The partition matrix and the prototypes are updated in an 

iterative fashion and the iterative optimization process 
keeps proceeding until an already determined certain 
termination criterion has been satisfied. 

 
2.2 Conditional fuzzy c-means clustering algorithms 

 
In order to determine the center points of radial basis 

functions of fRBFNNs, unsupervised clustering algorithms 
are generally used. As mentioned before, conventional 
unsupervised clustering methods cannot use the whole 
information involved in the given data patterns. Conventional 
FCM algorithm is known as a sort of unsupervised learning 
algorithms. The supervised learning version of conventional 
FCM is conditional fuzzy C-means clustering algorithm 
(cFCM) that was proposed by Pedrycz [9]. cFCM can 
analyze input space under supervision of other auxiliary 
information that can be defined by a designer or from the 
experimental evidence. 

In this study, we apply cFCM to define the center points 
of radial basis functions. When applying cFCM to analyze 
the data distribution, the input data pattern m

k ÎÂx  are 
grouped by taking into account the auxiliary information 
( 1 2, , , Nf f fL ). While the objective function for cFCM is 
the same as (1), the constraints are different from (2). The 
constraint for cFCM is as follows. 
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The optimization problem to minimize (1) subject to a 

constraint (6) is expressed as (7). 
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The optimal solution that minimizes the objective 

function (1) subject to (6) can be obtained by iterative 
update formulas such as (8) and (9). 
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2.3 k-Nearest neighbor approach for auxiliary 

information 
 
To apply the above explained cFCM, the already defined 

auxiliary information should be needed. We use k Nearest 
Neighbor approach to extract the auxiliary information 
which is defined on the output space. We can say that the 
data point, whose nearest neighbors are involved in the same 
class, has homogeneous characteristic. The heterogeneous 
data point is defined as the data point whose nearest 
neighbors are involved in different classes.  

In order to build homogeneous clusters over the input 
space, the homogeneous data points should be considered 
more importantly in comparison with the heterogeneous 
data points. Therefore, we define the auxiliary information 
of a given data point as how much homogeneous the data 
point is. In pattern recognition fields, kNN approach is 
considered as a kind of non-parametric method to directly 
classify the given data point. On the contrary, we use kNN 
approach to extract the auxiliary information. 

We define the auxiliary information as (10). 
 

 ij
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Here, ijf denotes the auxiliary information of the j-th 

data point jx  on the i-th class, K is the number of the 
nearest neighbors of the given data point, and ijn  means 
the number of the nearest neighbors of the given data 
which are involved in i-th class. The auxiliary information 
defined by (10) should satisfy (11). 
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Here, L means the number of classes. 
 

3. Radial Basis Function Neural Networks based 
on Auxiliary Information 

 
On the contrary to the general definition methods for 

the locations of RBFs which are based on the unsupervised 
clustering algorithm, we use cFCM to determine the 
locations of RBFs under the supervision of the auxiliary 
information. The auxiliary information includes the 
information of the class label of the given data point. 
This statement means that we can use the information, 
which the given data patterns represent over input space an 
output space, as much as we can use. 

In some literatures [10, 11], it is said that the RBFNNs 
have some advantages including global optimal approxi-
mation and classification capabilities as well as rapid 
convergence of the underlying learning procedures.  

The generic topology of RBF NNs is depicted in Fig. 1. 
In Fig. 1, Gi , i=1, 2,…, c denote receptive fields (radial 
basis functions), while the parameter “m” denotes the 
number of input variables. The output of the generic RBF 
NN is expressed as a linear combination of the outputs 
( ( )G x ) of the corresponding hidden nodes with the 
connection weights 1 2, , , cw w wL  as (12). 
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Here, ( )G x  means the activation level of i-th hidden 

node. 
We expand the generic RBFNNs by adopting cFCM to 

locate RBFs with the aids of auxiliary information and 
applying polynomials to connection weights. In the 
expanded version of RBFNNs, the auxiliary information 
extracted by kNN help cFCM determine the location of 
RBFs in the viewpoint of the homogeneity of the data 
points involved in the RBFs. We assume that in order to 
improve the identification performance, the data points 
which are involved in a cluster defined by a RBF should be 
homogeneous. To obtain the homogeneous clusters, we 

 
Fig. 1. General architecture of the generic RBF neural 

networks 
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apply cFCM with the auxiliary information obtained by 
using kNN. The auxiliary information through kNN means 
how much homogeneous the data points are. 

The overall topology of the Radial Basis Function 
Neural Networks with the auxiliary information is shown 
in Fig. 2. 

We use three types of polynomials as the consequent 
functions of the proposed RBF neural networks as follows. 

 
 j jF a=  (13-1) 
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The output of RBF neural networks is defined as (14). 
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4. Extraction of Input Variables from Raman 

Spectrum 
 
For implementing the identification system of black 

plastic, Raman spectroscopy is used as a sensor to obtain 
the specific data pattern from a black plastic material.  

Generally, Raman spectroscopy investigates materials 
not through direct absorption, but by scattering of high 
intensity light in the hopes that one in a million photons 

scattered will commune with the vibrational and rotational 
states of a sample molecule and emit light of a slightly 
different wavelength. 

The Raman spectroscopy equipment used in this experi-
ment is produced by Ocean Optics (www.oceanoptics.com). 
The Raman equipment is shown in Fig. 3. 

The light source of the Raman spectroscopy equipment 
is 785nm diode laser. The spectrum acquired from the 
above mentioned Raman spectroscopy of each plastic 
material is shown in Fig. 4. The raw spectrum obtained 
from Raman spectrometer should be preprocessed to be 
used as the input of the intelligent classifier (in this study, 
fRBFNNs). 

We should determine at which wave number the 
characteristic peaks happens according plastic materials 
such as PET, PP, and PS. The information of characteristic 
peaks of each plastic material can be obtained from the 
field experts. In this study, we do not try to depend on the 
field experts’ knowledge but to extract the information 
from the raw spectra obtained from Raman spectroscopy. 

In order to distinguish a plastic material from the other 
plastic materials, we extract unique wave number where 
the unique peaks of a specific plastic material happen. We 
compare a spectrum of a specific plastic material with the 
spectra of the other plastic materials. In this comparison 
operation, the “XOR” operator is used and is defined as 
(15). 

 
 ( , ) (1 ) (1 )XOR = - Ä + Ä -S T S T S T       (15) 

 
Fig. 2. An overall topology of radial basis function neural 

networks with auxiliary information 

 
Fig. 3. Integrated raman spectrometer produced by ocean 

optics 
 

 
Fig. 4. Spectra of plastics such as PET, PP, and PS obtained 

from RAMAN spectrometer 
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Here, Ämeans the element-wise product. 
For example, let the spectrum A and B be 

1 2

T

qa a aé ù= ë ûA L and 1 2

T

qb b bé ù= ë ûB L respectively. 

The result of “Ä ” operation of two spectra is calculated as 

1 1 2 2

T

q qa b a b a bé ùÄ = × × ×ë ûA B L .  

The results of XOR operation between two different 
plastic materials are shown in Fig. 5. 

The element-wise operation version of (15) is 
( , )xor a b = (1 ) (1 )a b a b- × + × - .  

In the case of 0 & 1a b= =  or 1 & 0a b= = , the 
output of the operation is maximized. In other words, 
when the difference between two spectra is big, the 
output of the XOR operation becomes big. We can 
consider the 15 maximum points of the result of the 
“XOR” operation between three different plastic materials 
as the characteristic peaks which are shown in only one 
plastic material.  

In the plastic material identification experiment, we 
obtain 100 raw spectra for each plastic material and total 
300 row spectra (100 PET, 100 PP, and 100 PS). From this 
“XOR” operation, we can estimate 15 characteristic peaks 
as shown in Table 1. 

 
 

5. Experimental Studies 
 
We make several experiments in order to verify the 

proposed design method based on k-NN and C-FCM to 
implement RBF neural networks. In these experiments, 
we use a series of machine learning datasets (http://www. 
ics.uci.edu/~mlearn/MLRepository.html).  

In this experiment, we use classification rate to evaluate 
the proposed classifier and 10-Fold cross-validation to 
evaluate the classification result. 

In addition, to verify the black plastic identification 
performance of the proposed intelligent classifier, we use 
black plastic raw spectra from Raman spectroscopy 
equipment. At first, we should predefine some design 
parameters whose values are summarized in Table 2. 

Table 3 summarizes the pertinent details of each dataset 

 
(a) XOR operation between PET and PP 

 
(b) XOR operation between PET and PS 

 
(c) XOR operation between PP and PS 

 
(d) XOR operation between three types of plastic materials 

Fig. 5. XOR operation result between plastic 

Table 1. The characteristic peaks estimated by “XOR” 
operation 

No. Wave 
Number No Wave 

Number No Wave 
Number 

1 493 6 853 11 1612 
2 640 7 999 12 1656 
3 706 8 1282 13 1725 
4 724 9 1367 14 2330 
5 746 10 1553 15 2876 

 
Table 2. The selected numerical values of the parameters 

of the proposed classification technique 

Parameter Value 
Number of Rules in each class(C) 2, 3, 4, 5 
Number of Nearest Neighbors(K) 3, 5, 7, 10, 20, 30 

Fuzzification Coefficient (p) 1.2, 1.5, 2.0, 2.5, 3.0 
Polynomial Type (T) 1, 2, 3 
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such as the number of classes, number of features, and 
number of patterns. 

Table 4 summarizes the classification performance (%) 
of the proposed neural networks and the generic RBF 
neural networks. From the experimental results shown in 
Table 4, the proposed RBFNNs are generally superior to 
the generic RBFNNs in the majority cases of data sets in 
terms of the prediction capability. 

In Fig. 6, the spectra of plastics obtained from Raman 

spectroscopy such as PP, PS, and PET are shown. 
In this black plastic identification experiment, the constant 

is used as the output polynomial used in fRBFNNs classifier. 
Because the higher order polynomial may result in the 
over-fitting problem. 

Table 5 summarizes the identification performance 
(expressed %) of the developed neural networks with 
respect to the number of selected variables (m), the number 
of nearest neighbors (K), the range of the input variables 
(R), the number of radial basis functions (C), and the 
fuzzification coefficient (p). The best result of the proposed 
identification system is the RBFNN with 9 RBFs, 3.0 
fuzzification coefficient. The prediction performance of the 
best RBFNN is 93.33%. 

In order to validate the identification ability of the 

Table 3. Machine learning datasets used in the experiments 

Data set Number  
of Classes 

Number  
of features 

Number  
of patterns 

Australian 
Balance 

Bupa 
German 

Glass 
Hayes 

Ionosphere 
Iris 

Pima 
Sonar 

Thyroid 
Vehicle 
Wine 
Zoo 

2 
3 
2 
2 
6 
3 
2 
3 
2 
2 
3 
4 
3 
7 

42 
4 
6 

24 
9 
5 

34 
4 
8 

60 
5 

18 
13 
16 

690 
625 
347 
1000 
214 
132 
351 
150 
768 
208 
215 
846 
178 
101 

 
Table 4. Classification performance of the proposed 

classifier and generic RBF neural networks 

Generic RBF NN Proposed RBF NN 
Training Data Test Data Training Data Test Data Data Sets 
mean STD mean STD mean STD mean STD 

Australian 84.36 1.24 85.65 4.61 86.23 0.81 86.38 4.33 
Balance 89.17 0.94 88.16 3.72 79.11 0.63 78.87 4.91 

Bupa 59.91 2.67 57.39 9.49 67.34 1.01 62.95 7.27 
German 67.07 0.80 67.00 3.40 69.71 0.62 70.00 4.57 

Glass 66.82 1.88 60.76 11.70 65.99 0.98 62.62 8.22 
Hayes 54.21 4.15 53.19 10.26 74.24 3.47 66.87 10.95 

Ionosphere 91.50 1.13 89.84 4.79 90.63 1.16 90.98 4.87 
Iris 95.85 1.12 96.00 7.17 96.37 0.89 97.33 3.44 

Pima 69.78 1.28 70.05 4.14 74.65 0.61 73.69 3.64 
Sonar 75.75 1.20 75.00 7.50 84.83 1.46 81.71 7.21 

Thyroid 95.92 0.90 97.66 3.33 96.49 0.41 97.21 3.22 
Vehicle 59.26 1.38 57.68 3.92 69.33 0.75 67.13 4.47 
Wine 97.13 0.73 97.78 3.88 95.57 0.55 97.22 3.93 
Zoo 99.23 1.05 96.00 6.99 97.47 0.90 93.00 8.23 

 

Table 5. The identification performance of the proposed 
plastic identification system 

C Training Data Test Data m R p K 
C1 C2 C3 mean STD mean STD 

7 5 2.0 10 4 4 4 86.50 2.35 86.0 3.65 
7 7 2.0 3 4 3 4 87.75 1.20 87.0 2.17 
9 5 1.5 7 3 3 4 86.92 1.00 85.67 3.46 
9 7 1.5 7 3 4 4 86.75 2.07 84.67 2.17 

15 5 3.0 10 4 3 3 92.92 1.21 93.33 6.56 
15 7 3.0 7 2 3 4 93.25 0.62 93.33 3.53 
20 5 3.0 10 2 4 2 90.08 1.68 90.67 4.80 
20 7 3.0 3 3 3 3 90.83 1.77 91.0 4.35 

 

 
(a) PET 

 
(b) PP 

 
(C) PS 

Fig. 6. Raman spectra of sampled plastics such (a) PET, (b) 
PP, and (C) PS 
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proposed classifier, the identification performance of the 
proposed classifier is compared with that of the already 
studied classifiers such as Bayesian Networks, SVM, k-
Nearest Neighbors Approach, AdaBoost, PART, J48, and 
Random Tree. Weka was used to obtain identification 
performances of these already studied classifiers. Weka is 
the well-known machine learning tool which is a collection 
of machine learning algorithms and can be downloaded at 
the website www.cs.waikato.ac.nz. In this experiment, we 
use 10-fold cross validation to evaluate the identification 
performance. Table 6 shows the comparison between the 
proposed classifier with the other well-known classification 
algorithms which are available in the Weka machine 
learning package. From the experimental results described 
in Table 6, the proposed identification system is said to be 
superior to the other machine learning algorithms in terms 
of the prediction ability. 

 
 

6. Conclusion 
 
In this paper, we proposed the new identification system 

for black plastic based on a kind of intelligent system and 
Raman spectroscopy equipment. Near infrared radiation 
spectroscopy is usually used to extract spectrum of plastic 
material. However, when dealing with black plastic, near 
infrared radiation spectroscopy cannot be used. In order 
to extract the raw spectrum from black plastic, we use 
Rama spectroscopy. In addition, to improve the classification 
ability of the fRBFNNs, we apply a supervised clustering 
algorithm not an unsupervised learning method to 
determine the parameters of the hidden layers with aids 
of the auxiliary information. This auxiliary information 
involves the information which can be extracted over 
output space. From the experimental results, we can say 
that the auxiliary information can help improve the 
classification ability of RBF neural networks. 
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(RBF kernel) N/A 82.10 

R=5, m=7, k=1 N/A 85.50 k-NN  
Approach R=5, m=7, k=3 N/A 87.73 
AdaBoost R=5, m=7 N/A 82.17 

PART R=5, m=7 N/A 81.77 
J48 R=5, m=7 N/A 80.83 

Random  
Tree R=5, m=7 N/A 79.93 
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