• 제목/요약/키워드: k-nearest neighbor method

검색결과 316건 처리시간 0.022초

An Improvement Video Search Method for VP-Tree by using a Trigonometric Inequality

  • Lee, Samuel Sangkon;Shishibori, Masami;Han, Chia Y.
    • Journal of Information Processing Systems
    • /
    • 제9권2호
    • /
    • pp.315-332
    • /
    • 2013
  • This paper presents an approach for improving the use of VP-tree in video indexing and searching. A vantage-point tree or VP-tree is one of the metric space-based indexing methods used in multimedia database searches and data retrieval. Instead of relying on the Euclidean distance as a measure of search space, the proposed approach focuses on the trigonometric inequality for compressing the search range, which thus, improves the search performance. A test result of using 10,000 video files shows that this method reduced the search time by 5-12%, as compared to the existing method that uses the AESA algorithm.

Clustering Techniques for XML Data Using Data Mining

  • Kim, Chun-Sik
    • 한국전자거래학회:학술대회논문집
    • /
    • 한국전자거래학회 2005년도 e-Biz World Conference 2005
    • /
    • pp.189-194
    • /
    • 2005
  • Many studies have been conducted to classify documents, and to extract useful information from documents. However, most search engines have used a keyword based method. This method does not search and classify documents effectively. This paper identifies structures of XML document based on the fact that the XML document has a structural document using a set theory, which is suggested by Broder, and attempts a test for clustering XML document by applying a k-nearest neighbor algorithm. In addition, this study investigates the effectiveness of the clustering technique for large scaled data, compared to the existing bitmap method, by applying a test, which reveals a difference between the clause based documents instead of using a type of vector, in order to measure the similarity between the existing methods.

  • PDF

Network Anomaly Detection using Hybrid Feature Selection

  • 김은혜;김세현
    • 한국정보보호학회:학술대회논문집
    • /
    • 한국정보보호학회 2006년도 하계학술대회
    • /
    • pp.649-653
    • /
    • 2006
  • In this paper, we propose a hybrid feature extraction method in which Principal Components Analysis is combined with optimized k-Means clustering technique. Our approach hierarchically reduces the redundancy of features with high explanation in principal components analysis for choosing a good subset of features critical to improve the performance of classifiers. Based on this result, we evaluate the performance of intrusion detection by using Support Vector Machine and a nonparametric approach based on k-Nearest Neighbor over data sets with reduced features. The Experiment results with KDD Cup 1999 dataset show several advantages in terms of computational complexity and our method achieves significant detection rate which shows possibility of detecting successfully attacks.

  • PDF

A Classification Method Using Data Reduction

  • Uhm, Daiho;Jun, Sung-Hae;Lee, Seung-Joo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권1호
    • /
    • pp.1-5
    • /
    • 2012
  • Data reduction has been used widely in data mining for convenient analysis. Principal component analysis (PCA) and factor analysis (FA) methods are popular techniques. The PCA and FA reduce the number of variables to avoid the curse of dimensionality. The curse of dimensionality is to increase the computing time exponentially in proportion to the number of variables. So, many methods have been published for dimension reduction. Also, data augmentation is another approach to analyze data efficiently. Support vector machine (SVM) algorithm is a representative technique for dimension augmentation. The SVM maps original data to a feature space with high dimension to get the optimal decision plane. Both data reduction and augmentation have been used to solve diverse problems in data analysis. In this paper, we compare the strengths and weaknesses of dimension reduction and augmentation for classification and propose a classification method using data reduction for classification. We will carry out experiments for comparative studies to verify the performance of this research.

k-NN 기법을 이용한 학습자 데이터의 노이즈 선별 방법 (Noise-Reduction of Student's Learning Data using k-NN Method)

  • 윤태복;이지형;정영모;차현진;박선희;김용세
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.135-138
    • /
    • 2006
  • 사용자 모델링을 위해서는 사용자의 성향 및 행위 등의 다양한 정보를 수집하여 분석에 이용한다. 하지만 사용자(인간)로 부터 얻은 데이터는 기계나 환경에서 수집된 데이터 보다 패턴을 찾기 힘들어 모델링하기 어렵다. 그 이유는 사용자는 사용자의 현재 상태와 상황에 따라 다양한 결과를 보이며, 일관성을 유지 하지 않는 경우가 있기 때문이다. 사용자 모델링을 위해서는 분산되어 있는 데이터에서 노이즈를 선별하고 연관성 있는 데이터를 분류할 수 있는 기술이 필요하다. 본 논문은 사용자로 부터 수집된 데이터를 k-NN(Nearest Neighbor) 기법을 이용하여 노이즈를 선별한다. 노이즈가 제거된 데이터는 의사결정나무(Decision Tree)방법을 이용하여 학습하였고, 노이즈가 분류되기 전과 비교 분석 하였다. 실험에서는 홈 인테리어 학습 컨텐츠인 DOLLS-HI를 이용하여 수집된 학습자의 데이터를 이용하였고, 생성된 학습자 모델링의 신뢰도가 높아지는 것을 확인하였다.

  • PDF

선별 시스템 기반 표지 유전자를 포함한 난소암 마이크로어레이 데이터 분류 (Classification of Ovarian Cancer Microarray Data based on Intelligent Systems with Marker gene)

  • 박수영;정채영
    • 한국정보통신학회논문지
    • /
    • 제15권3호
    • /
    • pp.747-752
    • /
    • 2011
  • 마이크로어레이 분류는 전형적으로 분류기 디자인과 에러 추정이 현저하게 작은 샘플에 기반한다는 것과 교차 검증 에러 추정이 대다수의 논문에 사용된다는 주목할 만한 두 가지 특징을 소유한다. 마이크로어레이 난소 암 데이터는 수 만개의 유전자 발현으로 구성되어 있고, 이러한 정보를 동시에 분석하기 위한 어떤 체계적인 절차도 없다. 본 논문에서는, 통계에 따라 유전자의 우선순위를 정함으로써 표지유전자를 선택하였고, 널리 보급되어 있는 분류 규칙인 선형 분류 분석, 3-nearest-neighbor와 결정 트리 알고리즘은 표지 유전자를 선택한 데이터와 선택하지 않는 데이터의 분류 정확도 비교를 위해 사용되어졌다. ANOVA를 이용하여 선택된 표지 유전자를 포함하는 마이크로어레이 데이터 셋에 선영 분류분석 규칙을 적용한 결과 97.78%의 가장 높은 분류 정확도와 가장 낮은 예측 에러 추정치를 나타내었다.

대용량 자료 분석을 위한 밀도기반 이상치 탐지 (Density-based Outlier Detection for Very Large Data)

  • 김승;조남욱;강석호
    • 한국경영과학회지
    • /
    • 제35권2호
    • /
    • pp.71-88
    • /
    • 2010
  • A density-based outlier detection such as an LOF (Local Outlier Factor) tries to find an outlying observation by using density of its surrounding space. In spite of several advantages of a density-based outlier detection method, the computational complexity of outlier detection has been one of major barriers in its application. In this paper, we present an LOF algorithm that can reduce computation time of a density based outlier detection algorithm. A kd-tree indexing and approximated k-nearest neighbor search algorithm (ANN) are adopted in the proposed method. A set of experiments was conducted to examine performance of the proposed algorithm. The results show that the proposed method can effectively detect local outliers in reduced computation time.

Face Representation and Face Recognition using Optimized Local Ternary Patterns (OLTP)

  • Raja, G. Madasamy;Sadasivam, V.
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.402-410
    • /
    • 2017
  • For many years, researchers in face description area have been representing and recognizing faces based on different methods that include subspace discriminant analysis, statistical learning and non-statistics based approach etc. But still automatic face recognition remains an interesting but challenging problem. This paper presents a novel and efficient face image representation method based on Optimized Local Ternary Pattern (OLTP) texture features. The face image is divided into several regions from which the OLTP texture feature distributions are extracted and concatenated into a feature vector that can act as face descriptor. The recognition is performed using nearest neighbor classification method with Chi-square distance as a similarity measure. Extensive experimental results on Yale B, ORL and AR face databases show that OLTP consistently performs much better than other well recognized texture models for face recognition.

STATISTICAL NOISE BAND REMOVAL FOR SURFACE CLUSTERING OF HYPERSPECTRAL DATA

  • Huan, Nguyen Van;Kim, Hak-Il
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.111-114
    • /
    • 2008
  • The existence of noise bands may deform the typical shape of the spectrum, making the accuracy of clustering degraded. This paper proposes a statistical approach to remove noise bands in hyperspectral data using the correlation coefficient of bands as an indicator. Considering each band as a random variable, two adjacent signal bands in hyperspectral data are highly correlative. On the contrary, existence of a noise band will produce a low correlation. For clustering, the unsupervised ${\kappa}$-nearest neighbor clustering method is implemented in accordance with three well-accepted spectral matching measures, namely ED, SAM and SID. Furthermore, this paper proposes a hierarchical scheme of combining those measures. Finally, a separability assessment based on the between-class and the within-class scatter matrices is followed to evaluate the applicability of the proposed noise band removal method. Also, the paper brings out a comparison for spectral matching measures.

  • PDF

Big Numeric Data Classification Using Grid-based Bayesian Inference in the MapReduce Framework

  • Kim, Young Joon;Lee, Keon Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권4호
    • /
    • pp.313-321
    • /
    • 2014
  • In the current era of data-intensive services, the handling of big data is a crucial issue that affects almost every discipline and industry. In this study, we propose a classification method for large volumes of numeric data, which is implemented in a distributed programming framework, i.e., MapReduce. The proposed method partitions the data space into a grid structure and it then models the probability distributions of classes for grid cells by collecting sufficient statistics using distributed MapReduce tasks. The class labeling of new data is achieved by k-nearest neighbor classification based on Bayesian inference.