
Original Article
International Journal of Fuzzy Logic and Intelligent Systems
Vol. 14, No. 4, December 2014, pp. 313-321
http://dx.doi.org/10.5391/IJFIS.2014.14.4.313

ISSN(Print) 1598-2645
ISSN(Online) 2093-744X

Big Numeric Data Classification Using
Grid-based Bayesian Inference in the
MapReduce Framework
Young Joon Kim1 and Keon Myung Lee2

1Cyberdigm, Seoul, Republic of Korea
2Dept. of Computer Science, Chungbuk National University, Cheongju, Republic of Korea
kmlee@cbnu.ac.kr

Abstract

In the current era of data-intensive services, the handling of big data is a crucial issue that
affects almost every discipline and industry. In this study, we propose a classification method
for large volumes of numeric data, which is implemented in a distributed programming
framework, i.e., MapReduce. The proposed method partitions the data space into a grid
structure and it then models the probability distributions of classes for grid cells by collecting
sufficient statistics using distributed MapReduce tasks. The class labeling of new data is
achieved by k-nearest neighbor classification based on Bayesian inference.

Keywords: big data, classification, data mining, Hadoop, MapReduce

Received: Nov. 2 2014
Revised : Nov. 25, 2014
Accepted: Dec. 6, 2014

Correspondence to: Keon Myung Lee
(kmlee@cbnu.ac.kr)
©The Korean Institute of Intelligent Systems

cc© This is an Open Access article dis-
tributed under the terms of the Creative
Commons Attribution Non-Commercial Li-
cense (http://creativecommons.org/licenses/
by-nc/3.0/) which permits unrestricted non-
commercial use, distribution, and reproduc-
tion in any medium, provided the original
work is properly cited.

1. Introduction

The recent technological advances in sensors and storage devices, as well as the advent of
various multimedia-based applications, mean that huge volumes of data are accumulated,
which need to be processed. Big data present new practical and theoretical challenges in
terms of the volume of data, the variety of data types, and the speed of processing. Thus,
various platforms and algorithms have been developed and put into practice to address these
issues [1, 2, 5, 6].

In the present study, we address the problem of constructing classifiers from a big data
training set that comprises continuous attributes. As the volume of data increases, classification
techniques that require multiple-pass processing experience severe resource demands. Thus,
existing algorithms can be parallelized to handle this problem, or new single-pass algorithms
need to be developed. In general, many machine learning algorithms assume that the training
dataset is not large and they have been developed for training datasets that are moderate in
size. Indeed, some of these techniques are not considered to be applicable to high dimensional
data due to the curse of dimensionality. However, big data application domains can be free
from the curse of dimensionality because the volume of data is sufficiently large.

The k-nearest neighbor classification methods determine the class of data objects based
on the class distribution of proximity-based nearest neighbors [7]. They do not require any
preliminary training of a classifier because they determine the classes of data objects based on
the class distributions of their neighbors. These methods might not be good choices in the big

313 |

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

http://dx.doi.org/10.5391/IJFIS.2014.14.4.313

data application domain because they take a long time to locate
the nearest neighbors and to compute the distances between the
query data objects and the data objects in the training dataset.
Grid-based approaches partition the data space into regularly
organized grid cells [8] and they can handle a dataset in cell
units instead of individual data objects. In the present study, we
propose a classification method that exploits the concepts of
k-nearest neighbor classification, grid-based partitioning, and
Bayesian inference, which can be applied to big data classifica-
tion. To handle big data in an efficient manner, some parts of
the proposed method are implemented using the MapReduce
paradigm [1] in the Hadoop framework [2].

The remainder of this paper is organized as follows. Section
2 provides a brief introduction to the Hadoop framework and
the MapReduce programming paradigm, as well as k-nearest
neighbor classifiers. Section 3 explains the proposed method
for building a classifier from big data with continuous attributes.
Section 4 presents some experiment results obtained using the
proposed method and Section 5 gives our conclusions.

2. Related Work

2.1 Hadoop and MapReduce

Considerable amounts of time and space are required to han-
dle large volumes of data. Occasionally, it might not be possible
to accommodate a large dataset on a single computer. This is
one of the main reasons for using a distributed file system,
where a file system can be networked among multiple servers
to manage big files. The servers in the distributed file system
need to be robust against failure because a failure at any point
could cause the entire system to malfunction. Thus, the files are
partitioned into blocks and multiple replicas of the blocks are
stored in different servers. Hadoop is an Apache project for a
distributed computing platform and it provides a distributed file
system called the Hadoop Distributed File System [2].

It is not sufficient to process or analyze big data to obtain
a distributed file system. Instead, it is necessary to produce a
framework for developing distributed parallel processing ap-
plications that can handle big data files. A simple approach to
performing a task in a distributed, parallel manner is to decom-
pose the task into independent subtasks, where they can be pro-
cessed without communication between them. The MapReduce
model [1] is a programming paradigm that allows a program to
be organized with independently executable processing mod-
ules called map and reduce. map is an operation that takes an
input and produces one or more pairs of (key, value), where

key usually acts as the identifier of a pair for which value’s
are later collected. reduce is an operation that processes the
values with the same key. The map functions cannot share any
information, which allows multiple instances to be executed
simultaneously for different parts of the input data. To employ
the MapReduce paradigm in data processing, we need to devise
a method for describing data processing tasks as a sequence of
map and reduce operations, which requires a suitable algorithm.
The map and reduce operations are paired, but sometimes it is
not sufficient to have a pair of map and reduce. In this case, a
pair of map and reduce can be chained, where the reduce output
from the preceding phase is used as an input for map in the
following phase.

To execute MapReduce-based programs, a framework is re-
quired to deploy them in a distributed system and to manage
resources, such as instantiating multiple map and reduce tasks,
delivering data from and to the distributed file system, recover-
ing from failure, and monitoring the status of the working tasks
and the networks. Hadoop provides an efficient framework for
running MapReduce-based programs [2].

2.2 k-Nearest Neighbor Classifiers

The k-nearest neighbor classifiers comprise nonparametric
classification methods for classifying data objects based on the
k closest training data objects in the data space. They classify a
data object based on a majority vote among its neighbors, i.e.,
the k nearest neighbors of the data object. These methods do
not construct explicit classifier models and they determine the
class labels of incoming data by referring to their neighbors
on the fly. These approaches are among the simplest machine
learning classifiers.

When a query data object arrives, a search is performed to
find the k nearest neighbors to the object. The distances be-
tween the query object and training data objects in the training
set must be evaluated to determine the neighbors. Various dis-
tance measures for numeric data have been developed such
as the Euclidean distance, Manhattan distance, Mahalanobis
distance, and cosine distance [8]. If the data contain categori-
cal attributes, other distance measures are needed such as the
Jaccard distance and Tanimoto distance [14].

If the data occupy a high dimensional space and the number
of data objects is large, it is not easy to locate the k nearest
neighbors. Thus, several data structures have been developed
for indexing neighbors, e.g., k-d tree, hierarchical k-means,
ball tree, spill tree, and spatial tree [11]. However, the perfor-

www.ijfis.org Big Numeric Data Classification Using Grid-based Bayesian Inference in the MapReduce Framework | 314

International Journal of Fuzzy Logic and Intelligent Systems, vol. 14, no. 4, December 2014

mance of the indexing structure degrades as the volume of data
increases. To overcome this difficulty, locality-sensitive hash-
ing techniques [11] have been developed, which use hashing
functions to make similar data objects collide in the same or
neighboring buckets. These techniques require the maintenance
of special hashing structures to record the data objects that
belong to each bucket.

3. MapReduce-based k-nearest Neighbor Bayesian
Classifier

In this study, we consider a classification problem for a
dataset that comprises numeric data with continuous attributes.
Each training data object is labeled with its class. The volume
of data can be huge and thus we cannot construct classifiers
by scanning the training data multiple times in practical appli-
cations. The volume of data can be a bottleneck for conven-
tional k-nearest neighbor classifiers. Thus, we propose a new
k-nearest neighbor classification method where we employ grid
partitioning of the data space and Bayesian inference to make
class decisions. To process big data in an effective manner, the
time-consuming tasks in the proposed method are implemented
using MapReduce operations.

It is assumed that the dataset D = {di|i = 1, . . . , N, di =

(ai1, . . . , aiM ; ci)} comprises a collection of data di with M
numeric attribute values (ai1, . . . , aiM) with class label ci.
Thus, there are M attributes (A1, . . . , AM) such that aij ∈
Range(Aj) = [Lj , Uj], i = 1, . . . , N, j = 1, . . . ,M . Each
data object has a class label, s.t., ci ∈ {K1, . . . ,Kp}.

To handle large volumes of data, the proposed method orga-
nizes the data space into a grid structure where the dimension
of each attribute is partitioned at equidistant intervals. This
partitioning process divides the data space into cells, where
each cell maintains the class-wise statistical information for the
data subset that belongs to the cell. Instead of using individual
training data objects, the method models them based on the
probability distributions of each class. The classification of
query data is performed by Bayesian inference using the prior
probabilities and likelihoods of the neighboring cells of the
query data.

The proposed strategy has two phases: the training phase and
inference phase. The inference phase comprises the following
steps.

Step 1. Partition the data space into grids.
Step 2. Apply the k-means clustering algorithm to class-wise

data in the grids with different numbers of clusters. Determine

Figure 1. Proposed strategy for the classification of big numeri-
cal data. (a) Learning phase for collecting the information used in
Bayesian inference. (b) Query inference phase.

the appropriate number of clusters for each class in the grids.
Step 3. Compute the statistics for each cluster.
Step 4. Build Gaussian models of the grids.

After constructing Gaussian models for the grids, class in-
ference is performed for a query according to the following
sequence.

Step 1. Find the home grid and the neighbors of a query.
Step 2. Compute the likelihoods of the query for each Gaus-

sian component.
Step 3. Compute the posterior probabilities of the classes by

Bayesian inference.
Step 4. Determine the class of the query with the highest

posterior probability.

3.1 Data Space Partitioning

The continuous attribute domains are partitioned into sev-
eral intervals, e.g., equidistant intervals, user-specified intervals,
equi-frequency intervals, or data distribution-based partitions.
Data processing is straightforward for equidistant interval par-
titioning and user-specified partitioning, but equi-frequency
interval partitioning requires that the attribute values are sorted,
which is a computationally intensive task. Distribution-based
partitioning requires some baseline information for each at-
tribute, such as the means and standard deviations.

The proposed method partitions each attribute dimension at
an equidistant interval. If we suppose that attribute Ai(i =

1, · · · ,M) with the range [Li, Ui] is partitioned into Ri inter-
vals, then the j-th interval Iij of Ai is the following interval.

Iij = [Li + (j − 1)∆i, Li + j ∗∆i), j = 1, · · · , Ri − 1

(1)

IiRi = [Li + (Ri − 1)∆i, Li +Ri ∗∆i] (2)

∆i = (Ui − Li)/Ri (3)

Each attribute may have a different numbers of intervals. A
cell in the data space is indexed by (k1, k2, · · · , kM), where the

315 | Young Joon Kim and Keon Myung Lee

http://dx.doi.org/10.5391/IJFIS.2014.14.4.313

Figure 2. Space partitioning and labeling. The label of a grid is
obtained by combining the labels of the corresponding axis labels.
On each axis, the intervals are labeled with consecutive integers and
thus the neighboring intervals can be identified by either addition or
subtraction. The neighboring grids of the grid with the label 3:3 are
labeled as 2:3, 3,4, 4:3, and 3:2.

corresponding cell is specified by the intervals (I1k1 , I2k2 , · · · , IMkM
).

When a data object dp is described by (x1, x2, · · · , xM), the
index (k1, k2, · · · , kM) of its corresponding cell is determined
as follows:

ki = b(xi − Li)/∆ic i = 1, . . . ,M, (4)

which means that we can easily locate the home cell of a data
object via a simple arithmetic operation even in a high dimen-
sional space. The neighboring cells are easily determined by the
indices. The indices (I1k1 , I2k2 , . . . , IMkM

) of 1-distance cells
for a cell (I1k1 , I2k2 , . . . , IMkM

) are determined as follows.

Iiki
= Iiki

+ δ1 δ1 ∈ {−1, 0, 1} (5)

In a similar manner, the indices of s-distance cells are deter-
mined as follows.

Iiki = Iiki + δs δs ∈ {−s, · · · ,−1, 0, 1, · · · , s} (6)

An s-distance cell is a cell located at a grid distance s from the
home cell.

3.2 Class-wise k-Means Clustering for Cluster Determi-
nation

The proposed method models each grid as a mixture of Gaus-
sians for each class. The constituent clusters are determined
for each class using the k-means algorithm, which requires a
pre-specified number of clusters. No information is available
about how many clusters exist in a class of grids. Thus, a cluster

validity index is used to determine the number of clusters. In
a grid, a class usually has a small number of clusters, which
might possibly be a single cluster.

Several cluster validity indices can be used to measure how
well the clusters are formed [8, 20]. The R-squared (RS) index
is a cluster validity index that measures the dissimilarity of
clusters [20] as the degree of homogeneity between groups
using values from 0 to 1, where 0 indicates that there is no
difference among the clusters and 1 indicates that there are
significant differences among the clusters. RS is defined as
follows:

RS =
SSt − SSw

SSt
, (7)

where

SSt =

|D|∑
i=1

||xi − x̄||2, SSw =

Nc∑
i=1

∑
xj∈Ci

||xj − x̄i||2

, where xi is the i-th data point, x̄ is the mean of all the data,
|D| is the overall data size, Ci is the i-cluster, x̄i is the centroid
of the i-cluster, and Nc is the number of clusters. The RS index
is always 0 for a dataset with a single cluster, and thus it is
preferable to have more than one cluster.

In a mixture of Gaussian models, it is better to merge two
neighboring clusters because small condensed Gaussian com-
ponents can have biased effects on Bayesian inference. To
measure the proximity of two clusters, we propose a so-called
separability index Sp(i, j) for a pair of clusters Ci and Cj :

Sp(i, j) =
radp(i) + radp(j)

dij
, (8)

where radP (i) indicates the distance to the centroid of the
cluster Ci for data where the distance from the centroid is
ranked among the p percentages of the top distances, and dij is
the distance between the cluster centroids of clusters i and j.

The following strategy is used to determine the number of
clusters for each class in a grid:

procedure Determine No. of Clusters

For i = 2 to K do
Apply the k-means algorithm to the dataset with i clus-

ters

Compute the RS index score RS(i) for the clustering
results

end
Choose the number of clusters that yield the highest RS index

www.ijfis.org Big Numeric Data Classification Using Grid-based Bayesian Inference in the MapReduce Framework | 316

International Journal of Fuzzy Logic and Intelligent Systems, vol. 14, no. 4, December 2014

Figure 3. Identification of a mixture of Gaussians. The k-means
clustering algorithm is applied to grids with various number of clusters.
The number of clusters is determined for each class in the grids and
their corresponding clusters.

score
For each pair of clusters among the selected number of clus-

ters
Compute the separability index Sp(i, j) for the pair

(Ci, Cj)

If the index score Sp(i, j) > the specified threshold θs
Merge the corresponding pair of clusters

3.3 Bayesian Inference and Sufficient Statistics for the Prob-
ability Distribution

Bayesian inference uses the Bayes’ rule to derive the poste-
rior probability P (C|d) of a class C for the given data d as the
product of the prior probability P (C) of class C and the likeli-
hood P (d|C), which is the probability that class C generates
the data d. The Bayes’ rule is represented as follows.

P (C|d) =
P (C)P (d|C)

P (d)
(9)

In the Bayesian-based classifier, a probability model is con-
structed for the likelihood function from the training dataset
and the prior probability is determined for each class. When a
data object d is given, the posterior probability for each class
C is computed, and its class is assigned the class label with the
highest posterior probability. In the Bayesian rule, the denomi-
nator P (d) is not evaluated because it applies to each posterior
computation, and thus it does not affect the determination of
the class label with the highest posterior probability.

The proposed method models the probability distributions
of the classes for each cell. The probability distributions are
assumed to be Gaussian. Gaussian distributions can be specified
by the mean and covariance matrix. The method keeps track of

the sufficient statistics required for the Gaussian distributions,
i.e., the numbers of data objects, sums of the attribute values,
and squared sums of the attribute values for each class. To
consider the correlations between attribute variables, we must
maintain the sums of the products for each pair of attribute
variables. LetNij be the size of the data subsetDij that belongs
to class Cj in cell Gi, where Mij is the sum of the attribute
values of data subset Dij and Sij,pq is the sum of the products
of the p-th and q-th attribute values of the data subsetDij . After
obtaining the sufficient statistics, the mean mij and covariance
matrix Σij for Dij are computed as follows.

mij =
Mij

Nij
(10)

(Σij)pq =
(Sij,pq)

(Nij − 1)
− (mi)p ∗ (mi)q (11)

The sufficient statistics-based method can acquire statistical
information during a single scan of the dataset, which can be
updated incrementally when additional data objects are avail-
able due to the additive property of the sufficient statistics.

3.4 MapReduce Algorithm for Collecting the Sufficient
Statistics

The following MapReduce operations are used to obtain
the sufficient statistics for the mean and covariance matrix of
the attribute values. The map function assumes that the first
element of the input records is the class label and that the
remaining elements are attribute values listed in a specific order.
First, the map function finds the index k1k2 · · · kM of the grid
cell occupied by the data R using Eq. (4). Next, it generates
a list where the element ‘1’ indicates the count of records, the
elements from the second place to the (M+1)-th place contain
the attribute values as they appear in the dataR, and the pairwise
products of the attribute values are appended to the end of the
list.

procedure: map(key = null, value = record R)
L[] := splits(R)
Compute the index k1k2 · · · kM of the data that correspond

to L[2..M + 1]

Using Eq. (4)
V al := ‘1’
For i := 2 to M + 1

V al := V al + “ ” + L[i]
For i : = 2 to M + 1

For j:= i to M + 1

317 | Young Joon Kim and Keon Myung Lee

http://dx.doi.org/10.5391/IJFIS.2014.14.4.313

V al := V al + “ ” + L[i] ∗ L[j]

write((k1k2 · · · kM ,L[1]), V al)

The reduce function aggregates all of the records that belong
to the same cell by adding them in a position-wise manner.
The output generated by the function comprises the key-value
pair(s), where key is the index for the corresponding grid cell,
and value comprises the class label, the list of means, and the
upper triangular portion of the covariance matrix.

procedure: reduce(key = (k1k2 · · · kM , class), values)
count := 0
Sum[1..M] := 0
V ar[1..(M(M + 1)/2)] := 0

Foreach val in values
L[] = splits(val)
count := count + L[1]
For i : = 1 to M

Sum[i] = L[i+1]
For i : = 1 to M

For j := i+ 1 to M
V ar[i ∗ (i − 1)/2 + j] := V ar[i ∗ (i − 1)/2 +

j] + L[i ∗ (i− 1)/2 + j +M + 1]

Mean[1..M] := 0
for i : = 1 to M

Mean[i] := Sum[i]/count

Cov[1..M][1..M] = 0
For i := 1 to M

For j := i+ 1 to M
Cov[i][j] := V ar[i ∗ (i− 1)/2 + j]/(count− 1)

For i := 1 to M
For j := i to M

Cov[i][j] := Cov[i][j]−Mean[i] ∗Mean[j]

V al := class + “ ” + count
For i : = 1 to M

V al := V al + “ ” + Mean[i]

For i : = 1 to M
For j := i to M

V al := V al + “ ” + Cov[i][j]

Write(k1k2 · · · kM , V al))

The map function produces an extended record, which is
M2/2 + 3M/2 times the original size M . This may impose a
large burden when handling the intermediate files betweenmap
processes and reduce processes. To handle this problem, we

apply the combine function after the map processes and before
the reduce processes. The combine processes run on every
node that runs the map processes. The input for the combine
process comprises all of the data generated by the map pro-
cesses on a given node. The output from the combine processes
is then sent to the designated reduce processes. The proposed
method uses the reduce function as the combine function be-
cause their roles are similar, except for the computation of the
model parameters such as the means and covariances. Using the
combine function dramatically reduces the bandwidth usage
and the size of the intermediate files.

procedure: combine(key = (k1k2 · · · kM , class), values)
count := 0

Sum[1..M] := 0

V ar[1..(M(M + 1)/2)] := 0

Foreach val in values
L[] = splits(val)

count := count + L[1]

For i : = 1 to M
Sum[i] = L[i+1]

For i : = 1 to M
For j := i+ 1 to M

V ar[i ∗ (i − 1)/2 + j] := V ar[i ∗ (i − 1)/2 +

j] + L[i ∗ (i− 1)/2 + j +M + 1]

V al := count

For i : = 1 to M
V al := V al + “ ” + Sum[i]

For i : = 1 to M
For j := i+ 1 to M

V al := V al + “ ” + V ar[i]

Write(key, V al))

3.5 Classification of New Data Using Bayesian Inference

To classify a new query data, the proposed method uses the
Bayesian inference rule. The MapReduce functions provide
the model parameters for the Gaussian probability distributions
of the classes in each grid cell. Each cell maintains the model
parameters for the probability distributions of the classes. We
refer to the cell that contains the query data as the home cellGh.
LetNBh be the index set of neighboring cells and d(Gi, Gh) is
the distance of a cellGi from the home cellGh. d(Gi, Gh) = s

if Gi is an s-distance cell from Gh.

www.ijfis.org Big Numeric Data Classification Using Grid-based Bayesian Inference in the MapReduce Framework | 318

International Journal of Fuzzy Logic and Intelligent Systems, vol. 14, no. 4, December 2014

Figure 4. Proposed MapReduce-based training and inference scheme.
The Mapper performs grid partitioning and the Reducer runs the k-
means clustering algorithm to determine the clusters for the Gaussian
components and to obtain the sufficient statistics. After a query is
issued, Bayesian inference is conducted using the sufficient statistics
to determine the most probable class label.

The prior probability of class Ck in cell Gi is defined as
follows.

Pi(Ck) =
Nik

ΣjNij
(12)

The likelihood Pi(dp|Ck) of data dp in class Ck at grid Gi is
defined as follows.

Pi(dp|Ck) =
1

(2π)n/2|Σik|1/2
exp(0.5(dp−mik)>Σik(dp−mik))

(13)
The posterior probability Pi(Ck|dp) of class Ck for data dp is
given as follows.

Pi(Ck|dp) =
Pi(Ck)Pi(dp|Ck)

Pi(dp)
(14)

The denominator Pi(dp) is the same for all classes Ck at Gi.
Thus, we can compute the posterior probability without using
Pi(dp), as follows.

Pi(Ck|dp) =
Pi(Ck)Pi(Ck|dp)∑
j Pi(Cj)Pi(Cj |dp)

(15)

The probability support P̂ (Ck|dp) of class Ck to dp is accu-
mulated as follows:

P̂ (Ck|dp) = Ph(Ck|dp)+
∑

n∈NBh
(d(Gn, Gh) + 1)w

Pn(Ck|dp),

(16)
where (d(Gn, Gh)+1)w is a weighting factor that makes closer
cells contribute more to class determination and w(w > 0) is
a control factor that determines the level of contribution. The
scope of the neighbors can be controlled by fixing the maximum
grid distance s from the home cell to the neighboring cells.

The final probability P (Ck|dp) is determined by computing
the normalization of the probability supports, as follows.

P (Ck|dp) =
P̂ (Ck|dp)∑
j P̂ (Cj |dp)

(17)

The data object dp is classified into the class C(dp) with the
maximum final probability:

C(dp) = arg max
k

p(Ck|dp). (18)

4. Experiments

The proposed algorithm was implemented using the MapRe-
duce libraries in Hadoop. The programs developed were exe-
cuted on a Hadoop cluster with eight commodity computers.
To assess the applicability of the proposed method, we applied
the method to a numeric benchmark dataset: Iris[10], which
comprised 150 objects with four numeric attributes and three
classes. A tenfold cross-validation was performed using the
dataset. To determine the appropriate probability distributions,
we required a sufficiently large dataset; thus, we enlarged the
dataset by sampling new data and adding Gaussian noise to
the attribute values in the existing dataset, thereby obtaining
a training dataset of 10,000 objects. Each attribute domain
was partitioned into five equidistant intervals. The number of
cells was 625. The accuracy obtained in the experiment was
comparable to that obtained with the C4.5 algorithm using Iris
data with 150 data objects. We found that the proposed method
performed adequately in the classification of big data. The use
of the combine function dramatically reduced the volume of
intermediate files, thereby making the reduce phase execute
over two times faster.

Another artificial dataset with three attributes and three classes
was generated randomly using 900 Gaussian distributions, where
the centroids of the covariance matrices were selected randomly.
For each Gaussian distribution, 500 data points were generated
that formed a cluster in the space. In the experiments, the range
of each attribute was partitioned into five intervals. A tenfold
cross-validation was performed using the dataset. According to
the experiments, the average accuracy was 94.3%.

In other experimental settings, we changed the number of
partitions of the attributes from two to six. There was no signif-
icant change in the accuracy, but there was a trade-off between
the execution time and the storage required to maintain suffi-
cient statistics for the grids as the number of partitions changed.
The increase in the number of partitions decreased the data

319 | Young Joon Kim and Keon Myung Lee

http://dx.doi.org/10.5391/IJFIS.2014.14.4.313

Table 1. Effects of cluster merging
without cluster with cluster
merging merging

resampled Iris
data

88.6% 94%

artificial data 75.8% 94.3%
with 900 clusters

volume handled by a single reducer and more reducers were
instantiated, so the degree of parallelism was also increased.
Because the reducers ran the k-means algorithm several times,
the reduction in the data volume for each reducer improved the
execution time significantly.

The merging of neighboring clusters using the separability
index improved the accuracy considerably, as shown in Table
1. Thus, small condensed Gaussian distributions with small
determinants in their covariance matrices had higher likelihoods
for queries.

5. Conclusions

The MapReduce model is an efficient computational model
for distributed parallel processing with big data. In this study,
we proposed a grid-based Bayesian inference classification
method that can handle big data.

The proposed method has the following advantages. It is a
single-pass algorithm that does not require multiple scans of
the training data to construct a classifier. It is very efficient at
locating the neighbors because the home cell of a data query is
determined by simple arithmetic computation and the neighbor-
ing cells are determined by index manipulation. It is scalable
for big volumes of data because only the sufficient statistics
for the probability distributions are maintained, which can be
updated by simple arithmetic operations as data objects arrive.
The neighboring class distribution can be visualized readily
because the neighboring cells are easily located and their class
probability distributions can be computed simply.

The proposed method has the following disadvantages. Fixed
length interval-based partitioning of the data space might not
capture the appropriate probability distributions of the classes.
To mitigate this problem, we could decrease the interval lengths
but there might be too many cells to be maintained in a high-
dimensional data space. A sufficiently large training dataset is
required to ensure that each grid cell has sufficient data subsets
to characterize the parameters of the probability distributions.
The proposed approach is not appropriate for classification prob-

lems with small training sets but it works well for big data. The
costly k-means clustering algorithm is executed multiple times
on each grid. As the number of grids increase, the volume of
data handled by a reducer decreases and the processing time
on a reducer also declines. This problem can be resolved by in-
creasing the size of the Hadoop clusters. Further improvements
can be achieved by employing a sampling technique that uses a
subset of the dataset to determine the number of clusters and
their centroids and covariance matrices, before collecting the
sufficient statistics for the corresponding clusters with respect
to the overall dataset.

Our experiments showed that the proposed system performed
well as a classifier for big data. Thus, the method could be
used for solving big data classification problems. In future
research, we aim to extend the proposed method to the simulta-
neous handling of datasets with both categorical and numerical
attributes.

Conflict of Interest

There are no potential conflicts of interest related to this study.

Acknowledgments

This study was supported by a research grant from Chungbuk
National University in 2014.

References

[1] J. Dean, S. Ghemawat, MapReduce: Simplified Data Pro-
cessing on Large Clusters, Proc. of the 6th Symp. on Oper-
ating Systems Design and Implementation, 2004.

[2] ,Hadoop, http://wiki.apache.org/hadoop/

[3] K.-M. Lee, K.M. Lee, C. H. Lee, “Linguistic Classification
Pattern Extraction for Numeric Data,” Proc. of WSEAS,
2012.

[4] L. Zhou, Z. Zhong, J. Chang, J. Li, J. Z. Huang, S. Feng,
“Balanced Parallel FP-Growth with MapReduce,” Proc. of
IEEE YC-ICT, 2010.

[5] , Apache Mahout, http://mahout.apache.org/

[6] G. Caruana, M. Li, and M. Qi, “A MapReduce based Par-
allel SVM for Large Scale Spam Filtering,” Proc. of 8th

www.ijfis.org Big Numeric Data Classification Using Grid-based Bayesian Inference in the MapReduce Framework | 320

International Journal of Fuzzy Logic and Intelligent Systems, vol. 14, no. 4, December 2014

Int. Conf. on Fuzzy Systems and Knowledge Discovery,
pp.2659-2662, 2011.

[7] M. Geetika, “A Survey of Classification Methods and its
Applications,” Int. J. of Computer Applications, vol.53,
No.17, 2012.

[8] S. Theodoridis, and K. Koutroumbnas, Pattern Recognition,
Elsevier, 2009.

[9] D. Lu, Q. Weng, “A survey of image classification methods
and techniques for improving classification performance,”
Int. J. of Remote Sensing, vol. 28, no.5, pp.823-870, 2007.

[10] M. M. Gaber, “Advances in data stream mining,” WIREs
Data Mining Knowl. Discov., vol.2, pp.79-85, 2012.

[11] K. M. Lee, “Locality-Sensitive Hashing Techniques for
Nearest Neighbor Search,” Int. J. of Fuzzy Logic and Intell.
Syst., vol.12, no.4, pp.300-307, 2012.

[12] A. Bifet and R. Kirkby, Data Stream Mining : A Practical
Approach, The University of Waikato, 2009.

[13] C. M. Bishop, Pattern Recognition and Machine Learning,
Springer, 2006.

[14] K. P. Murphy, Machine Learning: A Probablisitc Perspec-
tive, 2012.

[15] D. Koller, N. Friedman, Probabilistic Graphical Model:
Principles and Techniques, The MIT Press, 2009.

[16] , Iris Data Set, http://archive.ics.uci.edu/
ml/datasets/Iris

[17] P. Cunningham, and S. J. Delany, “k-Nearest Neighbor
Classifiers,” Technical Report UCD-CSI-2007-4, 2007.

[18] F. Kovacs, L. Csaba, and A. Babos. “Cluster validity mea-
surement techniques,” Proc. of 6th International Sympo-
sium of Hungarian Researchers on Computational Intelli-
gence, 2005.

[19] K.M. Lee, C.H. Lee, K.M. Lee, “Statistical cluster validity
indexes to consider cohesion and separation,” Proc. of 2012
Int. Conf. on Fuzzy Theory and Its Applications, iFUZZY
2012, pp. 228-232, 2012.

[20] S.-B. Roh, J.-W. Jeong, T.-C. Ahn, “Fuzzy Learning Vec-
tor Quantization based on Fuzzy k-Nearest Neighbor Proto-
types,” Int. J. of Fuzzy Logic and Intell. Syst., vol.11, no.2,
pp.84-88, 2011.

[21] S. Ko, D. Kim, B.-Y. Kang, “A Matrix-Based Genetic
Algorithm for Structure Learning of Bayesian Networks,”
Int. J. of Fuzzy Logic and Intell. Syst., vol.11, no.3, pp.135-
142, 2011.

Young Joon Kim is a big data engineer
at Cyberdigm, Korea. He received his BS
in computer science from Chungbuk Na-
tional University, and MS in big data sci-
ence from the same university. His research
interest includs big data procesing and data
mining.

Keon Myung Lee is a professor at De-
partment of Computer Science, Chung-
buk National University, Korea. He re-
ceived his BS, MS, and Ph.D. degrees in
computer science from KAIST, Korea and
was a Post-doc fellow in INSA de Lyon,
France. He was a visiting professor in

University of Colorado at Denver and a visiting scholar in Indi-
ana University, USA. His principal research interests are in data
mining, machine learning, soft computing, big data processing,
and intelligent service systems.

321 | Young Joon Kim and Keon Myung Lee

