위치기반서비스와 지능형교통시스템 등의 응용분야에서는 이동 중인 경로 상에 존재하는 모든 지점에 대해 k개의 최근접 객체를 탐색하는 연속 k 최근접 객체 탐색 질의가 폭넓게 사용되고 있다. 최근접 질의는 위와 같은 응용에 빠른 응답을 요구하고, 공간 네트워크 데이터베이스에 적용가능해야 한다. 또한 잦은 POI(Point of Interest) 객체의 변경에 유연하게 대처해야 한다. 이 논문에서는 도로 네트워크에서 이동 중인 질의 객체를 위한 최근접 객체를 효율적으로 탐색하는 새로운 기법을 제안하고자 한다. 제안하는 기법은 다수의 분할점과 그에 상응하는 k개의 최근접 객체 집합들을 결과로 추출하며, POI들 간에는 순서가 없다. 실제 데이터를 이용한 실험은 제안한 기법에 기존 기법에 비해 우수함을 보인다. 최적의 조건에서 제안한 기법이 기존 기법에 비해 짧은 연산 시간(15%)을 보인다.
비모수적 판별분류방법으로 널리 사용되는 ${\kappa}$-Nearest Neighbors Classification(KNNC) 방법은 자료의 국소적 특징을 고려하지 않고 전체 자료에 대해 고정된 이웃의 개수 ${\kappa}$를 사용하여 개체를 분류하는 방법이다. 본 연구에서는 KNNC의 대안으로 자료의 국소적 특징을 고려하는 Adaptive Nearest Neighbors Classificaion(ANNC) 방법을 제안하였다. 제안된 방법의 특징을 규명하기 위하여 실제 자료에 대한 분석을 통하여 제안된 방법의 응용 가능성을 제시하였으며, 나아가 모의실험을 통하여 기존의 방법과의 효율성을 비교하였다.
GPS 신호가 도달하지 않는 실내 환경에서 위치를 추정하는 연구는 지금까지 많이 이루어져 왔다. 또한 추정 기법도 여러 가지 기법들이 제안되었다. 본 논문에서는 다층 구조의 선박에서 위치를 추정하는 문제를 심도있게 고찰하였고 K-최근접 이웃 알고리즘 기반 Fingerprint 기법에 의한 위치 추정 방법에 대해 알아보았다. Fingerprint 기법을 쓰기 위해 39개의 RP에서 각각 N=100회의 수신신호를 측정함으로써 신뢰성 있는 DB를 구축하였고 이를 토대로 임의의 위치에 있는 단말기의 위치를 추정하는 모의실험을 하였다. 모의실험을 통해 Fingerprint 기법에 의한 위치 추정 성능은 아주 우수함을 알 수 있었다.
본 논문에서는 지능형 감시 시스템을 위해 공간적 확률 분포와 방향 서술자를 이용하여 다양한 배회행위를 검출하는 방법을 제안한다. 적응적 배경 모델링 기법을 이용하여 움직이는 객체를 검출하고, 검출된 객체로부터 움직임의 정보를 추출한다. 추출된 객체의 움직임 정보는 이동 궤적과 방향에 대해 특징벡터를 생성한다. 생성된 특징벡터는 k-Nearest Neighbor를 통해 최종적으로 배회행위를 검출하게 된다. 제안한 방법을 실내외 다양한 환경에서 테스트하여 배회 행위를 검출하는 결과를 나타내었으며 이는 실시간으로 검출되는 것을 확인하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권9호
/
pp.4476-4490
/
2017
The aim of image annotation is to determine labels that can accurately describe the semantic information of images. Many approaches have been proposed to automate the image annotation task while achieving good performance. However, in most cases, the semantic similarities of images are ignored. Towards this end, we propose a novel Visual-Semantic Nearest Neighbor (VS-KNN) method by collectively exploring visual and semantic similarities for image annotation. First, for each label, visual nearest neighbors of a given test image are constructed from training images associated with this label. Second, each neighboring subset is determined by mining the semantic similarity and the visual similarity. Finally, the relevance between the images and labels is determined based on maximum a posteriori estimation. Extensive experiments were conducted using three widely used image datasets. The experimental results show the effectiveness of the proposed method in comparison with state-of-the-arts methods.
본 논문에서는 GPU 병렬 처리 하드웨어 아키텍처 내 최소 물리적 스레드 실행 단위(warp) 내에서 shifted sort 기반 k개 최근접 이웃 검색 기법을 구현하는 방법을 논의하고 일반적으로 동일한 목적으로 널리 사용되는 GPU 기반 kd-tree 및 CPU 기반 ANN 라이브러리와 비교한 결과를 제시한다. 또한 많은 애플리케이션에서 k가 비교적 작은 값이 필요한 경우가 많다는 사실을 고려해서 k가 warp 내부에서 직접 처리 가능한 2, 4, 8, 16개일 때 최적화에 집중한다. 구현 세부에서는 사용한 CUB 공개 라이브러리의 루프 내 메모리 관리 방법, GPU 하드웨어 직접 명령 적용 방법 등의 최적화 방법을 논의한다. 실험 결과, 제안하는 방법은 기존의 GPU 기반 유사 방법에 비해 데이터 지점과 질의 지점의 개수가 각각 $2^{23}$개 일 때 16배 이상의 빠른 처리 속도를 보였으며 이러한 경향은 처리해야 할 데이터의 크기가 커지면 더욱 더 커지는 것으로 판단된다.
기억기반학습의 일종인 최근접 이웃(k nearest neighbor) 알고리즘은 과거의 데이터들 중에서 새로운 개체와 유사한 데이터들을 이용해서 새로운 개체의 목적 값을 예측하는 것이다. 이 경우 속성의 가중치를 계산하는 방식은 kNN의 성능을 결정하는 중요한 요소가 된다. 본 논문에서는 기존의 다른 이론들과 달리 정보이론에서 사용되는 엔트로피 개념을 이용해서 속성의 가중치를 이론적이고, 효과적으로 계산하는 새로운 방법을 제시하고자한다. 제안된 방법은 각 속성이 목적속성에 제공하는 정보의 양에 따라 가중치를 자동으로 계산하여 kNN의 성능을 향상시킨다. 마지막으로 이러한 방식의 성능을 다수의 실험을 통해 비교하였다.
사회의 복잡화와 인터넷의 성장으로 폭발적으로 늘어나고 있는 정보들을 사용자가 모두 검토한 후 여과하기는 어려운 일이다. 이러한 문제를 보완하기 위해서 자동화된 정보 여과 기술이 사용되는데, k-최근접 이웃(k-nearest neighbor) 알고리즘은 그 구현이 간단하며 비교적 정확하여 가장 널리 쓰이고 있는 알고리즘 중 하나이다. k 개의 최근접 이웃들로부터 평가값을 계산하는 데 흔히 쓰이는 방법은 상관계수를 이용한 가중치에 기반하는 것이다. 본 논문에서는 이를 보완하여 대규모 데이터에 대해서도 속도는 크게 저하되지 않으며 정확도는 대폭 향상시킬 수 있는 방법을 적용하였다. 또한, 최근접 이웃을 구하는 거리함수로 다양한 방법을 시도하였다. 영화추천을 위한 실제 데이터에 대한 실험 결과, 속도의 저하는 미미하였으나 정확도에 있어서는 크게 향상된 결과를 가져올 수 있었다.
참나무시들음병의 매개충인 광릉긴나무좀, Platypus koryoensis(Murayama)은 한국에서 참나무시들음병원균인 Raffaelea sp.를 매개하는 것으로 알려져 있다. 참나무시들음 발병정도는 광릉긴나무좀의 밀도에 의존적인 것으로 추정되고 있다. 이에 (樹幹)내 천공수와 집중도가 참나무 피해정도에 미치는 영향을 구명하기 위하여 본 연구를 수행하였다. 수락산 피해지에서 고사목 6그루와 피해목 28그루의 신갈나무의 피해정도, 단위면적당 천공수, 천공간 최근거리를 수간의 상부(지표로부터 50cm)와 하부(지표면)에서 조사하였다. 상부와 하부에서의 천공수는 양의 상관을 보였으며 천공간 최근거리 또한 같은 경향을 보였다. 천공수가 증가할수록 수목의 피해도가 심하였으나 수목의 피해도가 심할수록 천공간 최근거리는 감소하였다. 천공의 분포도 수목의 피해도가 증가할수록 집중분포에서 군일분포로 바뀌었다. 광릉긴나무좀이 초기에는 집중적으로 공격을 하나 수간내 밀도가 증가함에 따라 종내경쟁이 일어나고 경쟁의 결과 개체간 간섭현상이 유도되고 천공의 공간적 분포가 균일하게 변환하게 된다는 것을 암시하는 것이다.
본 논문에서는 퍼지논리에 기초한 Fisherface 얼굴인식 방법의 확장을 다룬다. Fisherface 얼굴인식 방법은 주성분 분석 기법만을 이용하는 경우에 비해 조명의 방향, 얼굴의 포즈, 감정과 같은 변동에 대해 민감하지 않은 장점을 가지고 있다. 그러나, Fisherface 방법을 포함한 얼굴인식의 다양한 방법들은 입력 벡터가 한 클래스에 할당되어질 때 그 클래스에서 소속의 정도를 0 또는 1로서 나타낸다. 따라서 이러한 방법들은 얼굴영상들이 조명이나 보는 각도로 인해 변형이 생기는 경우에 인식률이 저하되는 문제가 있다. 본 논문에서는 PCA에 의해 변환된 특징벡터에 퍼지 소속도를 할당하는 것으로, 퍼지 소속도는 퍼지 kNN(k-Nearest Neighbor)으로부터 얻어진다. 실험 결과 ORL, Yale 얼굴 데이타베이스에서 기존의 인식방법 보다 향상된 인식 성능을 보임을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.