• Title/Summary/Keyword: k-mean algorithm

Search Result 1,275, Processing Time 0.034 seconds

Performance Evaluation and Convergence Analysis of a VEDNSS LMS Adaptive Filter Algorithm

  • Park, Chee-Hyun;Hong, Kwang-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.2E
    • /
    • pp.64-68
    • /
    • 2008
  • This paper investigates noise reduction performance and performs convergence analysis of a Variable Error Data Normalized Step-Size Least Mean Square(VEDNSS LMS) algorithm. Adopting VEDNSS LMS results in higher system complexity, but noise is reduced providing fast convergence speed Mathematical analysis demonstrates that tap coefficient misadjustment converges. This is confirmed by computer simulation with the proposed algorithm.

Study on Satellite Vibration Control Using Adaptive Algorithm

  • Oh, Choong-Seok;Oh, Se-Boung;Bang, Hyo-Choong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2120-2125
    • /
    • 2005
  • The principal idea of vibration isolation is to filter out the response of the system over the corner frequency. The isolation objectives are to transmit the attitude control torque within the bandwidth of the attitude control system and to filter all the high frequency components coming from vibration equipment above the bandwidth. However, when a reaction wheels or control momentum gyros control spacecraft attitude, vibration inevitably occurs and degrades the performance of sensitive devices. Therefore, vibration should be controlled or isolated for missions such as Earth observing, broadcasting and telecommunication between antenna and ground stations. For space applications, technicians designing controller have to consider a periodic vibration and disturbance to ensure system performance and robustness completing various missions. In general, past research isolating vibration commonly used 6 degree order freedom isolators such as Stewart and Mallock platforms. In this study, the vibration isolation device has 3 degree order freedom, one translational and two rotational motions. The origin of the coordinate is located at the center-of-gravity of the upper plane. In this paper, adaptive notch filter finds the disturbance frequency and the reference signal in filtered-x least mean square is generated by the notch frequency. The design parameters of the notch filter are updated continuously using recursive least square algorithm. Therefore, the adaptive filtered-x least mean square algorithm is applied to the vibration suppressing experiment without reference sensor. This paper shows the experimental results of an active vibration control using an adaptive filtered-x least mean squares algorithm.

  • PDF

Design and Implementation of Optimal Adaptive Generalized Stack Filter for Image Restoration Using Neural Networks (신경회로망을 이용한 영상복원용 적응형 일반스택 최적화 필터의 설계 및 구현)

  • Moon, Byoung-Jin;Kim, Kwang-Hee;Lee, Bae-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.7
    • /
    • pp.81-89
    • /
    • 1999
  • Image obtained by incomplete communication always include noise, blur and distortion, etc. In this paper, we propose and apply the new spatial filter algorithm, called an optimal adaptive generalized stack filter(AGSF), which optimizes adaptive generalized stack filter(AGSF) using neural network weight learning algorithm of back-propagation learning algorithm for improving noise removal and edge preservation rate. AGSF divides into two parts: generalized stack filter(GSF) and adaptive multistage median filter(AMMF), GSF improves the ability of stack filter algorithm and AMMF proposes the improved algorithm for reserving the sharp edge. Applied to neural network theory, the proposed algorithm improves the performance of the AGSF using two weight learning algorithms, such as the least mean absolute(LAM) and least mean square (LMS) algorithms. Simulation results of the proposed filter algorithm are presented and discussed.

  • PDF

CONTINUOUS PERSON TRACKING ACROSS MULTIPLE ACTIVE CAMERAS USING SHAPE AND COLOR CUES

  • Bumrungkiat, N.;Aramvith, S.;Chalidabhongse, T.H.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.136-141
    • /
    • 2009
  • This paper proposed a framework for handover method in continuously tracking a person of interest across cooperative pan-tilt-zoom (PTZ) cameras. The algorithm here is based on a robust non-parametric technique for climbing density gradients to find the peak of probability distributions called the mean shift algorithm. Most tracking algorithms use only one cue (such as color). The color features are not always discriminative enough for target localization because illumination or viewpoints tend to change. Moreover the background may be of a color similar to that of the target. In our proposed system, the continuous person tracking across cooperative PTZ cameras by mean shift tracking that using color and shape histogram to be feature distributions. Color and shape distributions of interested person are used to register the target person across cameras. For the first camera, we select interested person for tracking using skin color, cloth color and boundary of body. To handover tracking process between two cameras, the second camera receives color and shape cues of a target person from the first camera and using linear color calibration to help with handover process. Our experimental results demonstrate color and shape feature in mean shift algorithm is capable for continuously and accurately track the target person across cameras.

  • PDF

Harmonic Elimination and Reactive Power Compensation with a Novel Control Algorithm based Active Power Filter

  • Garanayak, Priyabrat;Panda, Gayadhar
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1619-1627
    • /
    • 2015
  • This paper presents a power system harmonic elimination using the mixed adaptive linear neural network and variable step-size leaky least mean square (ADALINE-VSSLLMS) control algorithm based active power filter (APF). The weight vector of ADALINE along with the variable step-size parameter and leakage coefficient of the VSSLLMS algorithm are automatically adjusted to eliminate harmonics from the distorted load current. For all iteration, the VSSLLMS algorithm selects a new rate of convergence for searching and runs the computations. The adopted shunt-hybrid APF (SHAPF) consists of an APF and a series of 7th tuned passive filter connected to each phase. The performance of the proposed ADALINE-VSSLLMS control algorithm employed for SHAPF is analyzed through a simulation in a MATLAB/Simulink environment. Experimental results of a real-time prototype validate the efficacy of the proposed control algorithm.

Performance Analysis of an Improved NLMS Algorithm

  • Tsuda, Yusuke;Shimamura, Tetsuya
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1475-1478
    • /
    • 2002
  • This paper presents a performance analysis of an improved adaptive algorithm proposed by the authors recently. It is based on the normalized least mean square (NLMS) algorithm, which Is one of the major techniques to adapt the cofficients of a transversal filter. Generally, the performance of an adaptive algorithm is often discussed by investigating the mis-adjustment. In this paper, unlike these approaches, a novel analytical method is considered. letting the parameters so that the residual mean square error (MSE) after the convergence of the algorithm is equal to that of the NLMS algorithm, the MSE level is compared. It is shown that the theoretical analysis is agreed with the simulation results.

  • PDF

High-Quality and Robust Reversible Data Hiding by Coefficient Shifting Algorithm

  • Yang, Ching-Yu;Lin, Chih-Hung
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.429-438
    • /
    • 2012
  • This study presents two reversible data hiding schemes based on the coefficient shifting (CS) algorithm. The first scheme uses the CS algorithm with a mean predictor in the spatial domain to provide a large payload while minimizing distortion. To guard against manipulations, the second scheme uses a robust version of the CS algorithm with feature embedding implemented in the integer wavelet transform domain. Simulations demonstrate that both the payload and peak signal-to-noise ratio generated by the CS algorithm with a mean predictor are better than those generated by existing techniques. In addition, the marked images generated by the variant of the CS algorithm are robust to various manipulations created by JPEG2000 compression, JPEG compression, noise additions, (edge) sharpening, low-pass filtering, bit truncation, brightness, contrast, (color) quantization, winding, zigzag and poster edge distortion, and inversion.

A Variable Step-Size Adaptive Feedback Cancellation Algorithm based on GSAP in Digital Hearing Aids (가변 스텝 크기 적응 필터와 음성 검출기를 이용한 보청기용 피드백 제거 알고리즘)

  • An, Hongsub;Park, Gyuseok;Song, Jihyun;Lee, Sangmin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1744-1749
    • /
    • 2013
  • Acoustic feedback is perceived as whistling or howling, which is a major complaint of hearing-aids users. Acoustic feedback cancellation is important in hearing-aids because acoustic feedback degrades performance of the hearing aid device by reducing maximum insertion gain. Adaptive systems for estimate acoustic feedback path and feedback suppression algorithms have been proposed in order to solve this problem. A typical feedback cancellation algorithm is LMS(least mean squares) because of its computational efficiency. However it has problem of convergence performance in high correlated input signal. In this paper, we propose a new variable step-size normalized LMS(least mean squares) algorithm using VAD(voice activity detection) to overcome the limitation of the LMS algorithm. The VAD algorithm is GSAP(global speech absence probability) and the feedback cancellation algorithm is normalized LMS. The proposed algorithm applies different step-size between voice and non-voice using VAD, for high stability, fast convergence speed and low misalignment when correlated inputs, such as speech. The result of simulation with white noise mixed speech signal, the proposed algorithm shows high performance then traditional algorithm in terms of stability, convergence speed and misalignment.

A New Result on the Convergence Behavior of the Least Mean Fourth Algorithm for a Multiple Sinusoidal Input

  • Lee, Kang-Seung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.2E
    • /
    • pp.3-9
    • /
    • 1999
  • In this paper we study the convergence behavior of the least mean fourth(LMF) algorithm where the error raised to the power of four is minimized for a multiple sinusoidal input and Gaussian measurement noise. Here we newly obtain the convergence equation for the sum of the mean of the squared weight errors, which indicates that the transient behavior can differ depending on the relative sizes of the Gaussian noise and the convergence constant. It should be noted that no similar results can be expected from the previous analysis by Walach and Widrow/sup [1]/.

  • PDF

Short-term Electric Load Forecasting Using Data Mining Technique

  • Kim, Cheol-Hong;Koo, Bon-Gil;Park, June-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.807-813
    • /
    • 2012
  • In this paper, we introduce data mining techniques for short-term load forecasting (STLF). First, we use the K-mean algorithm to classify historical load data by season into four patterns. Second, we use the k-NN algorithm to divide the classified data into four patterns for Mondays, other weekdays, Saturdays, and Sundays. The classified data are used to develop a time series forecasting model. We then forecast the hourly load on weekdays and weekends, excluding special holidays. The historical load data are used as inputs for load forecasting. We compare our results with the KEPCO hourly record for 2008 and conclude that our approach is effective.