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Abstract

This paper investigates noise reduction performance and performs convergence analysis of a Variable Error Data Normalized Step-Size
Least Mean Square{ VEDNSS LMS} algorithm. Adopting VEDNSS LMS results in higher system complexity, but noise is reduced
providing fast convergence speed. Mathematical analysis demonstrates that tap coefficient misadjustment converges. This is confirmed

by computer simulation with the proposed algorithm.
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|, Introduction

The Least Mean Square (ILMS) algorithm is widely
used as an adaptive filtering algorithm, since il is
vobust and straightforward. When the imput signal
correlation is large, convergence rate is low and the
mean square error (MSE) is large. That is, the closer
the white signal is to the input signal, the higher the
speed of convergence. Many algorithms were proposed
to guarantee fast convergence and stability, Examples
include robust variable step—size (RVSS) LMS ai—
gorithm and error data normalized step—size (KDNSS)
LMS algorithmil11,[2].

Step—size # in the LMS algorithm controls con—
vergence speed of the filter coefficient and determines
excess mse in the convergence state,

Since the convergence ratc is in proporiional to
step—size #, a large # is often selected to ensure
fast convergence. However, when a large # is selected,

MSE is also large. The basic concept of the above
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two algorithms is that how each tap coefficient is
separated from the optimal coefficient. If the difference
between the optimal coefficient and each tap coe—
fficient 1s large. a large # is selected, conversely a
small # is selected.

In reference [1],[2] it can be seen that RVSS L.MS
and EDNSS LMS algorithm outperform the LMS
algorithm in convergence speed and mse, In reference
[3),[4] it has been reported that adopting variable
step—size decreases the convergence rate and mis—
adjustment error. Using this concept and once more
adjusting step~size differentiating objective function
with respect to step—size, we modified EDNSS LMS
as VEDNSS LMS. This paper analyzes the convergence
1o the optimal filter coefficient and derives the ex—
pression for the excess hiter coefficient error. The
results derived from the analysis are verified

numerically through computer simulation.

ll. EDNSS LMS Algorithm

The fractional quantity in (1) may be viewed as

a time—varying step—size. Clearly, it is controlled
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by normalization of both the error and the input data

vectors.
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where subscript k is the iteration number, w is the
vector of adaptive filter weights, ¢ is the desired
signal, x is the adaptive filier input veclor, # is a
positive scalar called the step—size and superscript
T denotes vector/matrix transposc. @ is a positive
constant between one and zero, € is the oulput
error and (3) is the squared norm of the error vector
estimated over its last L values.

i, Proposed VEDNSS LMS Algorithm

We now consider a performance function [5} such
as (4). It consists of the squared—error and the
additional exponenitial term to rcflect the property
that as the error is smaller Lhe step—size decreases,
conversely the step—size increases.

In the VEDNSS LMS algorithm, the filter coelficient
(w;)is determined according to (5) and step—size
{#) is controlled by (7}, (8) and (9). It can be seen
that the step—size is controlled by the squared—
norm of both the error and the input data vectors in
the denominator and by the element in the numerator
that is attained by differentiating (4) for step—size.
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where the parameter 2 is a small positive constant
that controls the adaptive behaviour of the step—size
4 and ¥ is a damping parameter that determines

algorithm sensitivity.

IV, Convergence Analysis of VEDNSS LMS
First, we can derive the following equation from (5).

42 e 2‘“‘2ﬂk9£ ;U,%@/? T
Wl =¥l =— =+ =7 xx
k4l * A 42 (10

where
W, =w,-w', A= (xHe,.(kjﬂz +(1-a)x, ||2,

w” ;optimal coefficient

In order for {10) 1o converge, it must be smaller
than zero. So (11) can be derived.
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Second, the expectation of the filler coefficient

error (Elw, must converge toward zcro.
E[W )= ET9, 18- 25 R,
K+l A (12)

where R, =£[x,x;1=MAM™ and positive definite.
(n1 : modal matrix of R, A © eigenvaluc matrix of R,)

Here, according to Schwarz—icequalty (13} can be
attained.
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Solving (13) for one norm case, {15) can be derived.
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Where A, is the mimmum value of A and Ay IS
the maximum value of A.

Finally, in order to converge step—size (#; ) must
be in the common range of (11),(15).

V, Simulation

The simulation results presented in this section
will show the potential performance of the VEDNSS
LMS. Simulation results are presented for the noisy
sinusoid represented as (18). Here #{(f} is Gaussian
noise with variance 0.3, signal frequency is 50 Hz,
sampling frequency is 10 kHz, and filter length is 50.

x(¢t) = sin{24f) + n{() (16)

Figure 1(a) is a noisy signal. Figure 1(b),(¢c),(d) are
the results where noise is removed using RVSS LMS,
EDNSS LMS, and VEDNSS LMS, respectively. It can
be seen that if a noisy signal is reconstructed using
the VEDNSS LMS algorithm, noise is reduced compared
to the case where any other method is used.

Figure 2(a) is the FFT result of a signal where the
(Gaussian noise with variance 0.3 is added and Figure
2 {(b),{c),(d) is the FFT result for the case where
the noise is removed through the RVSS LMS, EDNSS
LMS, and VEDNSS LMS adaptive filter, respectively.
We can see that other frequency components except
the 50Hz frequency are markedly reduced through
the VEDNSS LMS adaptive filtering.

Figure 3 is the variation of the step—size using the
VEDNSS LMS algorithm. It can be seen that the
step—size increases considerably in the initial iteration
state since the error is large. However, as the iteration
mumber increases the error and the input vector inner
product are much small compared to the denominator

of {8), so the step-size is nearly constant. Here
maximum step size is set to 0.26 and minimum is set
to 0.001.
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Fig. 1, Noise flitering results using thres adaptive aigorithms.
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Fig. 2. FFT results of noisy slgnal and fillered signal.
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Fig. 3. Step-size variation for VEDNSS fiiter,
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In Table 1, it can be seen that mse of the VEDNSS
LMS after 3500 samples (required to count mse in
a steady state) is smaller than that of the existing
algorithms.

Figure 4 shows the mse variation when the noise
variance is changed (0.05, 0.1, 0.15, 0.2, 0.25, 0.3).
It can be seen that mse of VEDNSS LMS is smaller
than that of other methods.

Figure 5 is the mse resull of RVSS LMS, EDNSS
LMS, and VEDNSS LMS according to various frequency
components (0.1~0.5 KHz) with interval 0.05 KHz.
It can be seen that mse of VEDNSS LMS is smaller
than that of other methods.

Figure 6 shows the MSE behaviours of three al—
gorithms. As seen from Figure 6, the proposed VEDNSS
LMS algorithm provides similar convergence speed
with RVSS LMS algorithm, and faster convergence
rate than EDNSS LMS algorithm. Therfore, we can
conclude that the proposed VEDNSS LMS has con—
vergence speed as fast as two existing algorithms
and smaller mse than that of two methods,

Vi. Conclusion

This paper examines a variable error data normalized
step—size LMS adaptive filtering algorithm. The al—
gorithm overcomes the disadvantages of a fixed step
—size M in the existing algorithms. Simulation results
show a mean square error improvement under a Gaussian
notse envirorment even after reaching a steady state
attaining the convergence rate as fast as the existing
two adaptive filtering algorithms.

Future work will concentrate on improving the
convergence rate. Experiments will be conducted under
a non—stationary noise environment.
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