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Abstract

In this paper we study the convergence behavior of the least mean fourth(LMF) algorithm where the error raised to the 

power of four is minimized for a multiple sinusoidal input and Gaussian measurement noise. Here we newly obtain the 
convergence equation for the sum of the mean of the squared weight errors, which indicates that the transient behavior 

can differ depending on the relative sizes of the Gaussian noise and the convergence constant. It should be noted that no 
similar results can be expected from the previous analysis by Walach and Widrow'니.

I. Introduction

In many areas of digital communication, control, and 

signal processing, it is open desired to extract useful 

information from a set of noisy data by designing an 
optimum filter. One way of solving this filter
optimization problem is by using a Wiener filter121, 

however, assumes that the signals being processed are 
stationary and requires a priori knowledge, or at least 

estimates, of their statistics which are not always 
available. Moreover, it is needed to solve a set of linear 
matrix equations to find optimum filter coefficients.

The adaptive filter, however, makes it possible to 
perfonn satisfactorily in such environments where 

complete knowledge of the signal statistics is unavailable. 
In other words, the adaptive filter gradually learns the 

required correlations of the input signals and adjusts its 

coefficients recursively according to some suitably chosen 
statistical criterion.

The Least Mean Square(LMS) adaptive algorithm have 

been successfully utilized for a variety of applications 
including system identification13,4,51, noise cancellation16,71, 
echo cancellation"'9', channel equalization^ 이 during the last 

two decades. Meanwhile, the adaptive filtering algorithms 

that are based on high order error power conditions have 
been proposed and their performances have been 
investigated*'"」지"4). Despite the potential advantages, 

these algorithms are less popular than the conventional 

LMS algorithm in practice. This seems partly because the 
analysis of the high order error based algorithms is much

Dept, of Computer Engineering, Dongeui University

Manuscript Received: October 2, 1998 

more difficult, and thus not much still has been known 

about the algorithms.
The least mean fourth (LMF) adaptive algorithm111 in 

which the error raised to the power of four is minimized. 
Here, one has to consider the possibility of the 

convergence to local minimum. However, the mean of 
the error to the power of four is a convex function of 
the weight vector and therefore can not have local 
minima. Indeed the Hessian matrix of the error to the 

four power function can be shown to be positive define 
or positive semidefinite1151.

Walach and Widrow studied the convergence of the 
least mean fourth (LMF) adaptive algorithm111. However, 

in their convergence study of the mean squared weight 
errors, the statistical moments of the weight errors with the 

orders greater than two were neglected and the transient 

behavior was not analyzed. In this paper, we present a new 

result on the convergence of the least mean fourth 
algorithm under the system identification model with the 
multiple sinusoidal input and Gaussian measurement noise.

Following the introduction, we give a brief description 
of the underlying system model in Section n. The results 

of the convergence analysis and the simulation are 

presented in Sections DI and IV, respectively. Finally we 
make a conclusion in Section V.

II. System Model

We consider an adaptive noise cancellation problem for 
the multiple sinusoidal input and Gaussian measurement noise. 
In that case, both the unknown system and corresponding 
adaptive filter can be described by the multiple in-phase 
(Z) and quadrature (Q ) weights as shown in Figure I13,61.
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Figure 1. Adaptive digital filter for a multiple sinusWdal 
input under study.

For the m-th sinusWdal noise, the adaptive canceller 

structure also becomes to have two weights 

and a)Q>m(w), with I and Q inputs, xand 

X Qtm(n), respectively. Thus the output of the m-th 

controller, y m(n) is expressed as

ym(n) = { xItm(n) + xQtm(n)wQtm(n)) (1)

where

xJtm(n)=^Am cos(twmM+ <pm) 스/4辑 cos 孔(m), 

XQ,m(n) Am sin(a)m n + 饱“) 스

m : branch index = 1, 2, 3, M, 
n : discrete time index, 

A : amplitude, 
co : normalized frequency, 
W : random phase.

Also, referring to the notation in Figure. 1, the error 
signal e(n) is represented by

e(w)=丈；{dm{n) - ym(n)} + 
m= 1

=_ 据"烦cos w) + (2)

{wQ( n)-WQ)sin «)] + ??(n)

where 7( n) is zero-mean measurement noise.

It can be shown from (1) and (2) that minimizing the 
fourth power error and using a gradient-descent method'기 

yields a pair of the LMF weight update equations for 

each m as

히〃e(経+l)=z奴沸3) + 2“켜。%算)

and wQtm(n + l)= wQtfn(n) + 为)xQttn(n) (3) 

where j is a convergence constant.
In the following, we analyze the convergence behavior 

of the mean and summed variance of weight errors of 

the LMF algorithm using a new analysis method.

III. Convergence Analysis

3.1 The first moment of weight error

To see how the adaptive algorithm derived in (3) converges, 
we first investigate the convergence of the expected values 

of the adaptive weights. To simplify the convergence 
equation, we may introduce two weight errors as

v/,m(n) 스 w/i(w(«) 一 wkm

and vQtm(n) 스 wQitn(n) 一 茶顷 . (4)

Inserting (4) into (3), we have

*“«(为+1)= 々혀(沥 +2/ime3(n) x/iM(w) , 

and %侦(算+1)=%顽 3) +2pMe3(n) xQrm(n), (5)

Rearranging (5) with (2), taking expectation of both 

sides of the resultant two weight-error equations, we can 
get the convergence equation based on the independent 
assumption on the underlying sign이 ; xm(n), ^(n), 以끼(吋 

and Vq, 꺼 (”).

一乎“4此瓦挤,，Jz)]—芸国北瓦W, m3)]瓦诡師(刀)] 

and
瓦强”；(刀+1)] = (1-3“”心如瓦四，”(初

一乎“mA,瓦〃*師(刀)]一冬■ “队厶,瓦”£»>(〃)]瓦"(?，師(刀)]・

(6)
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In (6), the moment terms of order greater than 1 
decrease much faster than the first order moment term in 

E[vi,m(n)] and E[vQitn(n)]. Therefore, ignoring the moment 
terms order greater than 1, the convergence equation 
becomes

刀十1)]拦(1 - 3“协A%就)现〃顽(初，

i =1 and Q . (7)

As it is clearly seen in (7), the mean of weight error 

converges exponentially to 0 under following conditions.

|1一 3“師疋0 I < 1,

0〈门龙房• (8)

We see that stabilizing condition of (8), unlike the 

Least Mean Square(LMS), is affected by variance of 
measurement noise signal.

In a sufficiently large time constant r domain, time 

constant r for exponential convergence can be simplified 

and is derived[3].

eS S 11-
1 m

=I 1一 A% 元丨，i=L Q (9)

From (9) the time constant is

3 = 3“，“歸' (10)

3.2 The second moment of weight error

Next we investigate the convergence of the mean

square error(MSE), E[e2(«)]. Using (2) and (4), we 

can express the MSE as

=丈"％3) + 确 

m=l '

=身言 A云”(”)+ * (11)

where

& ( 刀) 스 E[z知 ( 算)]+ 剧说 徊 ( 以 , 

就 스 剧 / («)].

From (11), we find that studying the convergence of 

MSE is directly related to studying the sum of n).

Inserting (1) and (2) into (5), and assuming that input 

signal xm(n)t measurement noise 次刀)，and weight 

errors vIm( w), vQt m( n) are independent of each other, 

we take the stati마ical average of both sides to obtain 

two equations fbr E [w/(m+D], E [^(m+1)]. Since 

there two equations are symmetrical, we add them and 

assume that E [v{m (n+l)]^£? [v^m (m+I)]. Thus, 

elimin- ating the subscripts I and Q to simplify the 

second moment equation of weight error and rearranging 

the terms yields

= |p^(£[4(«)1+ 3瓦以(，z)]现此3)]}

(£[Vm(M)D2 )

+新此，鶴砒綿)]{瓦於(")]+ (£(4(W)])2)

+ {1 - 6 “ 甘(湖 + 30“幻4,现，汽 ”)]}瓦德，(耸)]

+ 2以“4%丘斯6(勿]. (12)

Assuming that 〃(刀)is a Gaussian with zero average 

and tW/iW(n), <w(p,OT(w) are Gaussian variables, vm(n) 

is also a Gaussian variable. Thus, (12) can be simplified 

by expressing E 言斧(w)] as E [此(«)]. Although 

E [vm (n)] decreases very rapidly, it is no zero from 

the beginning. Thus, a Gaussian random variable △ wm (n) 

with zero average, and its variance are adapted as 

follows:

△ 紗，”3) 스 X 3) — Vm(n)t

彼：(w)]=化(n) + p^( n) (13)

where 匕” 3) 스瓦0師 (龙)],

Pm(«) 스硏△ 氣，(死)].

From (13), we find that during the transient state, i.e. 

from beginning to the moment just before the steady 

state, q%( n) is much smaller than 卩%(n) and 

E [vm (n)] can be regarded as n). On the other 

hand, p^,(w) becomes dominant over 1^,( n) in the 

steady state and E [vm («)] can be regarded as n).

Now, we apply (13) to (12) and use the relationship 

between E [v^ (w)] and E [此(«)] of the Gaussian 

random variable[16] to arrive at the following equation.
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n+l) + Pm( «+l)

= 5pUt(Vt(«) + 9p^(«) Vt(«) + 18pi(»)化(奔)+6q%(勿｝ 

一(3〜4%-45獄)｛薛)+4成(方)化(为)+ 2次3)｝

+ (1-6缶収此序十90成4土次)｛化3) + n)｝

+ 30“，形勇. (14)

3.2.1 Convergence d니「ing the transient state

The convergence equation (14) may be examined for 

two different cases, First, p^(n) and the last term of 

(14) can be removed for the transient state. Thus, the 

transient convergence equation is given by

化(〃+1) n) 一 (3“，，，A*，- 45“%此爲)卩%( «)

+ (1-6缶，及云+90“猥以如化(耸).(15)

Figure 2. Learning curves fcr the LMF algorithm of the summed 
variance of weight errors at the transient state;
(1)味(算)term, (2) V^(n) term, (3) V^(n) term,

Figure 2 showed the summed variance convergence curve 
of weight errors for the LMF algorithm at the transient 

state that resulted from the theoretical computation when 

“加=0.2, Am = V2, and (^ = 0.001. Taking each 

term on the right-hand side of (15) separately and 

examining them carefully, we notice that the first 此(鈴) 

term and the last V^n) term start off as positive 

values and are reduced to zero. The second 卩* n) 

term, however, start off as a negative value and 

increases to zero. It is noted from the right-hand side of 

(15) that in extreme cases, only one of the two terms

n) or 卩%(龙)is dominant. Therefore, we may 

consider a particular value %次 of V^n) for which 

those two terms are the same and is given by

T72 _ I 1 一 就 + 90“%시诺
j= V 3)

In (16), the first term n) acts as the dominant 

term when 卩%( n) is greater than V%, If V%( n) 比 

is smaller than * 如 then the last term becomes 

dominant. Figure 3 is given to illustrate in terms of the 

convergence constant 闵n and the variance of 

measurement noise 勇,which of the two terms, the first 

term V^( n) and the last term V^(n), is dominant 

when n) = 0.8. Point (a) is a region in which the 

term 片(死)dominates over the other and point (b) is 

when V%(刀)term is the dominant one. Therefore, the 

transient convergence equation (15) can be written as ;

8
U
°
»
>
 
e
'2O
N
e
e
E
 은
 ns»es

0.05

Figure 3. Dominant term decision diagram for the LMF 
algorithm of the summed variance of weight 
errors at the transient-state.

[point (a):上=0.3 and c修= 0.L point (b): 

“m = 0.2 and c《=0.5.]

5必曲化3)
，拔Qz)》化m (17a)

谣‘3+g (1-弘，疋。4+9况住粉诧3)

,(17b)

Now, from (17a) we may derive the conditions for 
stability and the time constant by rewriting it as
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V2m{n) = 两(0)产

= 3法时"여 W (18)

Thus, (18) is stable under the following condition ;

I、/如* 比(0) I < 1.

Q < ^ <、匡 a!化(0)■ (19)

Note from the conditions for stability in (19) that the 

initial value of weight error acts as a limiting factor, 
along with the amplitude of input signal, the gain of the 

secondary path and the estimated gain of the secondary 

path. And, (17b) is stabilized when it satisfies the 

condition below ;

I 1-6“，”AM井+ 90/4A,片丨〈1,

0 < 临 F/ (20)

From (9) and (17b), the time constant is given by;

5=瓦厂疋新％m房r (21)

3.2.2 Convergence in the steady state

In the steady state, n) becomes sufficiently small 

and the terms that include Q*(龙)and p^(w) can be 

ignored in the convergence equation (14). The equation 
is then simplified as

w+D 竺(1-~6“*4%《兄+90 以—A,祐)p!( n) + 30 <4

(22)

And, the summed variance of weight errors in the 
steady state, f m(oo) is 2pm(oo) and it can be written as

&(8)= 2 %(oo)=耽吳0 • (23)

When the convergence constant p.m satisfy the stability 

condition (20), the second term on the denominator of 
the right-hand side of (23) is sufficiently smaller than 
the first term and it is ignored to yield the following 
equation.

3.2.3 Comparison of the LMF and LMS 

algorithm11,141

Comparing the performance of adaptive algorithms 

usually involves two methods. The first method is to compare 
the state of convergence after setting equal values for the 

steady state, and the other one involves comparing the 

steady state values for same rate of convergence.

Summed variance of weight errors of the LMS 

algorithm is a geometric series and the time constant can 

be defined while that of the LMF algorithm (14) is not 

a geometric series and therefore, the time constant may 

not be defined. Then we set the steady state values of 

the two algorithms equal and compare the convergence 

rates. From (24) and (34) in [1] we obtain as

(°°)= E賦LMS)(8),

10 卩戒 LMF) & = Pm(LA£S)就，

卩— 10 (J2 W

where 軸 Um(LMS)are the convergence constants of

LMF and LMS algorithms, respectively.

IV. Computer Simulations

In this section, we present the results obtained from 
computer simulation along with the theoretical analysis of 
LMF algorithm in the previous section.

case 1. the convergence property of LMF algorithm, 

case 2. the performance comparison of LMF and LMS.

We set the frequencies of the first and second 

sinusoidal signal at 120Hz and 240Hz, respectively, and 

selected 2KHz for sampling frequency. The input signal 
x(n) and desired signal d(n) are given by

x(n) = Amcos(a>mn+ 知)tn= 1

=\厄{cos (喘护 + ©1) + cos (嚟+ 物)},

d(旌)=宀协 + WQ,mXQ,m} m= 1

= 0.6x/>1(«)—+0.3xzi2(«)—0.3xo>2(«).
(26)

The simulation was carried out by setting 0.001 and 1 as 

the variances of measurement noise 确.And the initial 

value of weights is zero. The simulation results were 

obtained by ensemble averaging 1000 independent runs.

&（8）=10#却勇. (24)
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4.1 The convergence property of LMF 

algorithm

Figure 4 (a) and (b) showed the summed variance 
convergence curves of weight error for the LMF 

algorithm that resulted from the simulation when 

= 0.2,或=0.001 and 收 lmf) = 0.0002,

就=1, respectively. We see that 俨(刀)is the

dominant term during the transient state whereas p2(w) 

becomes dominant during the steady state.

(a) =02 n ~ 0.001.

亶 
©
_
3
«
 
§

(b)叩 LMF) =0.0002,就=1.

Fig니re 4. Learning curves for the LMF algorithm of the 
summed variance of weight errors when the 
convergence behaviors are divided between 
V^(m) and p2(w).

The convergence speed of the two algonthm were 
compared after setting the steady-state values equal. 

The convergence constants of LMF and LMS algorithm 

were carefully chosen so that they satisfy the conditions 
given in (25) for a given variance of measurement signal. 

To be specific, we selected 0.2 and 0.0002 for //(LA£S)

to make the steady-state values of two algorithm equal 

when (衆 is given as 0.001 and 1 and "成月 is 0.002.

In Figure 5, the convergence behavior curves of 
summed variance of weight error obtained from 

simulation are compared with each other. It has been 

newly found that for some region of 卩，and c*, resulting 

in sufficiently small values compared to unity, the initial 

convert- gence of the LMF algorithm is much faster than 

the conventional LMS algorithm. Later on, the LMF 

convergence looks similar to the LMS case. This fact 
has not been reported yet mainly because the higher 

order moments have not been included in the previous 
analysis of the LMF transient behavior111. On the other 

hand, when 1爲 is large, the LMF algorithm converges 

geometrically at a rate a bit slower than the LMS case.

-30

-40

-50

-10

5000 5500
-70 

500 1000 1500 2000 2500 3000 3500 4000 4500
Number of Adaptations

algorithm 
of weight

Figure 5. Comparison of the LMF and LMS 
learning curves of the summed variance 
errors;
(a) P (LMS) = 이)。2, 卩 (lmf广 Q2, *=0.001 

I爲=0.558,

(b) “ (LMS)= 0.002, “ (lmFT 0.0002,玲 1 

V% = 558.

and

and

4.2 The comparison of LMF and LMS

We have compared the convergence behavior of LMF 
algorithm and that of algorithm LMS through simulation.

V. Conclusions

We present a new result on the convergence of 
least mean fourth(LMF) algorithm under the system 
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identification model with the multiple sinusoidal input 

and Gaussian measurement noise. The analytical result on 

the mean square convergence shows that depending on 
the power of Gaussian noise and the size of convergence 

factor. Accordingly, the transient behavior can be charact
erized by one of the two cases: (1) initially, the LMF 

algorithm converges much faster than the LMS, but soon 
after that, it converges almost linearly on logarithmic 

scale like the LMS algorithm; (2) the LMF algorithm 
converges linearly and at a slower rate than the LMS. 

To sum up, different convergence behavior was observed 
depending on the variance of Gaussian measurement 
noise and the magnitude of convergence constant.
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