• Title/Summary/Keyword: k-hypergeometric function

Search Result 180, Processing Time 0.017 seconds

GENERALIZATION OF EXTENDED BETA FUNCTION, HYPERGEOMETRIC AND CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Lee, Dong-Myung;Rathie, Arjun K.;Parmar, Rakesh K.;Kim, Yong-Sup
    • Honam Mathematical Journal
    • /
    • v.33 no.2
    • /
    • pp.187-206
    • /
    • 2011
  • The main object of this paper is to present generalization of extended beta function, extended hypergeometric and confluent hypergeometric function introduced by Chaudhry et al. and obtained various integral representations, properties of beta function, Mellin transform, beta distribution, differentiation formulas transform formulas, recurrence relations, summation formula for these new generalization.

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X8

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.257-264
    • /
    • 2012
  • Exton introduced 20 distinct triple hypergeometric functions whose names are $X_i$ (i = 1, ${\ldots}$, 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_0F_1$, $_1F_1$, a Humbert function ${\Psi}_1$, and a Humbert function ${\Phi}_2$. The object of this paper is to present 18 new integral representations of Euler type for the Exton hypergeometric function $X_8$, whose kernels include the Exton functions ($X_2$, $X_8$) itself, the Horn's function $H_4$, the Gauss hypergeometric function $F$, and Lauricella hypergeometric function $F_C$. We also provide a system of partial differential equations satisfied by $X_8$.

EXTENSION OF EXTENDED BETA, HYPERGEOMETRIC AND CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Choi, Junesang;Rathie, Arjun K.;Parmar, Rakesh K.
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.357-385
    • /
    • 2014
  • Recently several authors have extended the Gamma function, Beta function, the hypergeometric function, and the confluent hypergeometric function by using their integral representations and provided many interesting properties of their extended functions. Here we aim at giving further extensions of the abovementioned extended functions and investigating various formulas for the further extended functions in a systematic manner. Moreover, our extension of the Beta function is shown to be applied to Statistics and also our extensions find some connections with other special functions and polynomials such as Laguerre polynomials, Macdonald and Whittaker functions.

GENERATING FUNCTIONS FOR THE EXTENDED WRIGHT TYPE HYPERGEOMETRIC FUNCTION

  • Jana, Ranjan Kumar;Maheshwari, Bhumika;Shukla, Ajay Kumar
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.75-84
    • /
    • 2017
  • In recent years, several interesting families of generating functions for various classes of hypergeometric functions were investigated systematically. In the present paper, we introduce a new family of extended Wright type hypergeometric function and obtain several classes of generating relations for this extended Wright type hypergeometric function.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HA

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.34 no.1
    • /
    • pp.113-124
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeometric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_A$.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HB

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • The Pure and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeometric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_B$.

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X5

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.32 no.3
    • /
    • pp.389-397
    • /
    • 2010
  • Exton introduced 20 distinct triple hypergeometric functions whose names are Xi (i = 1,$\ldots$, 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_0F_1$, $_1F_1$, a Humbert function $\Psi_2$, a Humbert function $\Phi_2$. The object of this paper is to present 25 (presumably new) integral representations of Euler types for the Exton hypergeometric function $X_5$ among his twenty $X_i$ (i = 1,$\ldots$, 20), whose kernels include the Exton function X5 itself, the Exton function $X_6$, the Horn's functions $H_3$ and $H_4$, and the hypergeometric function F = $_2F_1$.

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION $X_2$

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.347-354
    • /
    • 2010
  • Exton [Hypergeometric functions of three variables, J. Indian Acad. Math. 4 (1982), 113~119] introduced 20 distinct triple hypergeometric functions whose names are $X_i$ (i = 1, ..., 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_oF_1$, $_1F_1$, a Humbert function ${\Psi}_2$, a Humbert function ${\Phi}_2$. The object of this paper is to present 16 (presumably new) integral representations of Euler type for the Exton hypergeometric function $X_2$ among his twenty $X_i$ (i = 1, ..., 20), whose kernels include the Exton function $X_2$ itself, the Appell function $F_4$, and the Lauricella function $F_C$.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HC

  • Choi, Junesang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.34 no.4
    • /
    • pp.473-482
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeo-metric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_C$.