• 제목/요약/키워드: k-connected graph

검색결과 145건 처리시간 0.025초

RECOGNITION OF STRONGLY CONNECTED COMPONENTS BY THE LOCATION OF NONZERO ELEMENTS OCCURRING IN C(G) = (D - A(G))-1

  • Kim, Koon-Chan;Kang, Young-Yug
    • 대한수학회보
    • /
    • 제41권1호
    • /
    • pp.125-135
    • /
    • 2004
  • One of the intriguing and fundamental algorithmic graph problems is the computation of the strongly connected components of a directed graph G. In this paper we first introduce a simple procedure for determining the location of the nonzero elements occurring in $B^{-1}$ without fully inverting B, where EB\;{\equiv}\;(b_{ij)\;and\;B^T$ are diagonally dominant matrices with $b_{ii}\;>\;0$ for all i and $b_{ij}\;{\leq}\;0$, for $i\;{\neq}\;j$, and then, as an application, show that all of the strongly connected components of a directed graph G can be recognized by the location of the nonzero elements occurring in the matrix $C(G)\;=\;(D\;-\;A(G))^{-1}$. Here A(G) is an adjacency matrix of G and D is an arbitrary scalar matrix such that (D - A(G)) becomes a diagonally dominant matrix.

ON COMMUTING GRAPHS OF GROUP RING ZnQ8

  • Chen, Jianlong;Gao, Yanyan;Tang, Gaohua
    • 대한수학회논문집
    • /
    • 제27권1호
    • /
    • pp.57-68
    • /
    • 2012
  • The commuting graph of an arbitrary ring R, denoted by ${\Gamma}(R)$, is a graph whose vertices are all non-central elements of R, and two distinct vertices a and b are adjacent if and only if ab = ba. In this paper, we investigate the connectivity, the diameter, the maximum degree and the minimum degree of the commuting graph of group ring $Z_nQ_8$. The main result is that $\Gamma(Z_nQ_8)$ is connected if and only if n is not a prime. If $\Gamma(Z_nQ_8)$ is connected, then diam($Z_nQ_8$)= 3, while $\Gamma(Z_nQ_8)$ is disconnected then every connected component of $\Gamma(Z_nQ_8)$ must be a complete graph with a same size. Further, we obtain the degree of every vertex in $\Gamma(Z_nQ_8)$, the maximum degree and the minimum degree of $\Gamma(Z_nQ_8)$.

ON THE MINIMUM WEIGHT OF A 3-CONNECTED 1-PLANAR GRAPH

  • Lu, Zai Ping;Song, Ning
    • 대한수학회보
    • /
    • 제54권3호
    • /
    • pp.763-787
    • /
    • 2017
  • A graph is called 1-planar if it can be drawn in the Euclidean plane ${\mathbb{R}}^2$ such that each edge is crossed by at most one other edge. The weight of an edge is the sum of degrees of two ends. It is known that every planar graph of minimum degree ${\delta}{\geq}3$ has an edge with weight at most 13. In the present paper, we show the existence of edges with weight at most 25 in 3-connected 1-planar graphs.

[2,3]-FACTORS IN A 3-CONNECTED INFINITE PLANAR GRAPH

  • Jung, Hwan-Ok
    • Journal of applied mathematics & informatics
    • /
    • 제10권1_2호
    • /
    • pp.27-40
    • /
    • 2002
  • For two integers m, n with m $\leq$ n, an [m,n]-factor F in a graph G is a spanning subgraph of G with m $\leq$ d$\_$F/(v) $\leq$ n for all v ∈ V(F). In 1996, H. Enomoto et al. proved that every 3-connected Planar graph G with d$\_$G/(v) $\geq$ 4 for all v ∈ V(G) contains a [2,3]-factor. In this paper. we extend their result to all 3-connected locally finite infinite planar graphs containing no unbounded faces.

THE ZERO-DIVISOR GRAPH UNDER GROUP ACTIONS IN A NONCOMMUTATIVE RING

  • Han, Jun-Cheol
    • 대한수학회지
    • /
    • 제45권6호
    • /
    • pp.1647-1659
    • /
    • 2008
  • Let R be a ring with identity, X the set of all nonzero, nonunits of R and G the group of all units of R. First, we investigate some connected conditions of the zero-divisor graph $\Gamma(R)$ of a noncommutative ring R as follows: (1) if $\Gamma(R)$ has no sources and no sinks, then $\Gamma(R)$ is connected and diameter of $\Gamma(R)$, denoted by diam($\Gamma(R)$) (resp. girth of $\Gamma(R)$, denoted by g($\Gamma(R)$)) is equal to or less than 3; (2) if X is a union of finite number of orbits under the left (resp. right) regular action on X by G, then $\Gamma(R)$ is connected and diam($\Gamma(R)$) (resp. g($\Gamma(R)$)) is equal to or less than 3, in addition, if R is local, then there is a vertex of $\Gamma(R)$ which is adjacent to every other vertices in $\Gamma(R)$; (3) if R is unit-regular, then $\Gamma(R)$ is connected and diam($\Gamma(R)$) (resp. g($\Gamma(R)$)) is equal to or less than 3. Next, we investigate the graph automorphisms group of $\Gamma(Mat_2(\mathbb{Z}_p))$ where $Mat_2(\mathbb{Z}_p)$ is the ring of 2 by 2 matrices over the galois field $\mathbb{Z}_p$ (p is any prime).

ON TWO GRAPH PARTITIONING QUESTIONS

  • Rho, Yoo-Mi
    • 대한수학회지
    • /
    • 제42권4호
    • /
    • pp.847-856
    • /
    • 2005
  • M. Junger, G. Reinelt, and W. R. Pulleyblank asked the following questions ([2]). (1) Is it true that every simple planar 2-edge connected bipartite graph has a 3-partition in which each component consists of the edge set of a simple path? (2) Does every simple planar 2-edge connected graph have a 3-partition in which every component consists of the edge set of simple paths and triangles? The purpose of this paper is to provide a positive answer to the second question for simple outerplanar 2-vertex connected graphs and a positive answer to the first question for simple planar 2-edge connected bipartite graphs one set of whose bipartition has at most 4 vertices.

PEBBLING NUMBERS OF GRAPH PRODUCTS

  • Kim, Ju Young;Kim, Sung Sook
    • 충청수학회지
    • /
    • 제14권1호
    • /
    • pp.7-14
    • /
    • 2001
  • Let G be a connected graph. A pebbling move on a graph G is taking two pebbles off one vertex and placing one of them on an adjacent vertex. The pebbling number of a connected graph G, f(G), is the least n such that any distribution of n pebbles on the vertices of G allows one pebble to be moved to any specified, but arbitrary vertex by a sequence of pebbling moves. In this paper, the pebbling numbers of the lexicographic products of some graphs are computed.

  • PDF

5-CYCLABILITY IN INFINITE PLANAR GRAPHS

  • JUNG HWAN-OK
    • Journal of applied mathematics & informatics
    • /
    • 제19권1_2호
    • /
    • pp.537-543
    • /
    • 2005
  • A graph is k-cyclable if given k vertices there is a cycle that contains the k vertices. Sallee showed that every finite 3-connected planar graph is 5-cyclable. In this paper Sallee's result is extended to 3-connected infinite locally finite VAP-free plane graphs containing no unbounded faces.

이종 IoT 데이터 표현을 위한 그래프 모델: 스마트 캠퍼스 관리 사례 연구 (A Graph Model of Heterogeneous IoT Data Representation : A Case Study from Smart Campus Management)

  • 뉘엔반퀴엣;뉘엔휴쥐;뉘엔양쯔엉;김경백
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.984-987
    • /
    • 2018
  • In an Internet of Thing (IoT) environment, entities with different attributes and capacities are going to be connected in a highly connected fashion. Specifically, not only the mechanical and electronic devices but also other entities such as people, locations and applications are connected to each other. Understanding and managing these connections play an important role for businesses, which identify opportunities for new IoT services. Traditional approach for storing and querying IoT data is used of a relational database management system (RDMS) such as MySQL or MSSQL. However, using RDMS is not flexible and sufficient for handling heterogeneous IoT data because these data have deeply complex relationships which require nested queries and complex joins on multiple tables. In this paper, we propose a graph model for constructing a graph database of heterogeneous IoT data. Graph databases are purposely-built to store highly connected data with nodes representing entities and edges representing the relationships between these entities. Our model fuses social graph, spatial graph, and things graph, and incorporates the relationships among them. We then present a case study which applies our model for representing data from a Smart Campus using Neo4J platform. Through the results of querying to answer real questions in Smart Campus management, we show the viability of our model.

2-간선 연결 그래프를 사용한 최소신장트리 알고리즘 제안 (Proposal of Minimum Spanning Tree Algorithm using 2-Edges Connected Grap)

  • 이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권4호
    • /
    • pp.233-241
    • /
    • 2014
  • 본 논문은 원 그래프를 2-간선 연결 그래프로 단순화하고, 사이클 속성을 적용하여 최소신장트리를 빠르게 얻는 알고리즘을 제안하였다. Borůvka 알고리즘은 정점 (v) 당 최소 가중치 간선 (v) 을 1개씩 선택하는 1-간선 연결 그래프에 대해 사이클 속성을 적용하여 부분신장트리를 얻는다. 추가적으로 절단속성을 적용하여 부분신장트리를 연결하는 최소 가중치 간선을 선택한다. Kruskal 알고리즘은 그래프의 모든 간선을 대상으로 오름차순으로 절단 속성을 적용한다. 역-삭제 알고리즘은 내림차순으로 사이클 속성을 적용한다. Borůvka, Kruskal과 역-삭제 알고리즘은 모든 간선들을 대상으로 하기 때문에 항상 |e| 회 수행된다. 제안된 알고리즘은 첫 번째로, 정점 당 최소 가중치 간선을 2개씩 선택하는 2-간선 연결 그래프를 얻는다. 두 번째로, 2-간선 연결 그래프에 대해 사이클 속성을 적용하여 |e|=|v|-1 일 때 알고리즘을 종료시켰다. 제안된 방법들을 10개의 실제 그래프들에 적용한 결과 모두 최소신장트리를 얻는데 성공하였다. 또한, Borůvka, Kruskal과 역-삭제 알고리즘에 비해 수행 횟수를 60% 단축시켰다.