• 제목/요약/키워드: k-Nearest Neighbor Method

검색결과 316건 처리시간 0.032초

Protecting Accounting Information Systems using Machine Learning Based Intrusion Detection

  • Biswajit Panja
    • International Journal of Computer Science & Network Security
    • /
    • 제24권5호
    • /
    • pp.111-118
    • /
    • 2024
  • In general network-based intrusion detection system is designed to detect malicious behavior directed at a network or its resources. The key goal of this paper is to look at network data and identify whether it is normal traffic data or anomaly traffic data specifically for accounting information systems. In today's world, there are a variety of principles for detecting various forms of network-based intrusion. In this paper, we are using supervised machine learning techniques. Classification models are used to train and validate data. Using these algorithms we are training the system using a training dataset then we use this trained system to detect intrusion from the testing dataset. In our proposed method, we will detect whether the network data is normal or an anomaly. Using this method we can avoid unauthorized activity on the network and systems under that network. The Decision Tree and K-Nearest Neighbor are applied to the proposed model to classify abnormal to normal behaviors of network traffic data. In addition to that, Logistic Regression Classifier and Support Vector Classification algorithms are used in our model to support proposed concepts. Furthermore, a feature selection method is used to collect valuable information from the dataset to enhance the efficiency of the proposed approach. Random Forest machine learning algorithm is used, which assists the system to identify crucial aspects and focus on them rather than all the features them. The experimental findings revealed that the suggested method for network intrusion detection has a neglected false alarm rate, with the accuracy of the result expected to be between 95% and 100%. As a result of the high precision rate, this concept can be used to detect network data intrusion and prevent vulnerabilities on the network.

Effect of missing values in detecting differentially expressed genes in a cDNA microarray experiment

  • Kim, Byung-Soo;Rha, Sun-Young
    • Bioinformatics and Biosystems
    • /
    • 제1권1호
    • /
    • pp.67-72
    • /
    • 2006
  • The aim of this paper is to discuss the effect of missing values in detecting differentially expressed genes in a cDNA microarray experiment in the context of a one sample problem. We conducted a cDNA micro array experiment to detect differentially expressed genes for the metastasis of colorectal cancer based on twenty patients who underwent liver resection due to liver metastasis from colorectal cancer. Total RNAs from metastatic liver tumor and adjacent normal liver tissue from a single patient were labeled with cy5 and cy3, respectively, and competitively hybridized to a cDNA microarray with 7775 human genes. We used $M=log_2(R/G)$ for the signal evaluation, where Rand G denoted the fluorescent intensities of Cy5 and Cy3 dyes, respectively. The statistical problem comprises a one sample test of testing E(M)=0 for each gene and involves multiple tests. The twenty cDNA microarray data would comprise a matrix of dimension 7775 by 20, if there were no missing values. However, missing values occur for various reasons. For each gene, the no missing proportion (NMP) was defined to be the proportion of non-missing values out of twenty. In detecting differentially expressed (DE) genes, we used the genes whose NMP is greater than or equal to 0.4 and then sequentially increased NMP by 0.1 for investigating its effect on the detection of DE genes. For each fixed NMP, we imputed the missing values with K-nearest neighbor method (K=10) and applied the nonparametric t-test of Dudoit et al. (2002), SAM by Tusher et al. (2001) and empirical Bayes procedure by $L\ddot{o}nnstedt$ and Speed (2002) to find out the effect of missing values in the final outcome. These three procedures yielded substantially agreeable result in detecting DE genes. Of these three procedures we used SAM for exploring the acceptable NMP level. The result showed that the optimum no missing proportion (NMP) found in this data set turned out to be 80%. It is more desirable to find the optimum level of NMP for each data set by applying the method described in this note, when the plot of (NMP, Number of overlapping genes) shows a turning point.

  • PDF

UWB 레이더를 사용한 수면무호흡환자에 대한 비접촉방식 수면효율 및 수면 단계 추정 (Noncontact Sleep Efficiency and Stage Estimation for Sleep Apnea Patients Using an Ultra-Wideband Radar)

  • 박상배;김정하
    • 한국산업융합학회 논문집
    • /
    • 제23권3호
    • /
    • pp.433-444
    • /
    • 2020
  • This study proposes a method to improve the sleep stage and efficiency estimation of sleep apnea patients using a UWB (Ultra-Wideband) radar. Motion and respiration extracted from the radar signal were used. Respiratory signal disturbances by motion artifacts and irregular respiration patterns of sleep apnea patients are compensated for in the preprocessing stage. Preprocessing calculates the standard deviation of the respiration signal for a shift window of 15 seconds to estimate thresholds for compensation and applies it to the breathing signal. The method for estimating the sleep stage is based on the difference in amplitude of two kinds of smoothed respirations signals. In smoothing, the window size is set to 10 seconds and 34 seconds, respectively. The estimated feature was processed by the k-nearest neighbor classifier and the feature filtering model to discriminate between the sleep periods of the rapid eye movement (REM) and non-rapid eye movement (NREM). The feature filtering model reflects the characteristics of the REM sleep that occur continuously and the characteristics that mainly occur in the latter part of this stage. The sleep efficiency is estimated by using the sleep onset time and motion events. Sleep onset time uses estimated features from the gradient changes of the breathing signal. A motion event was applied based on the estimated energy change in the UWB signal. Sleep efficiency and sleep stage accuracy were assessed with polysomnography. The average sleep efficiency and sleep stage accuracy were estimated respectively to be about 96.3% and 88.8% in 18 sleep apnea subjects.

전자우편 문서의 자동분류를 위한 다중 분류기 결합 (Combining Multiple Classifiers for Automatic Classification of Email Documents)

  • 이지행;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권3호
    • /
    • pp.192-201
    • /
    • 2002
  • 디지털 형태의 문서가 널리 퍼지고 끊임없이 증가함에 따라 이를 자동으로 가공하고 처리하는 문서 자동분류의 중요성이 널리 인식되고 있다. 최근의 문서 자동분류는 k-최근접 이웃, 결정트리, Support Vector Machine, 신경망 등의 다양한 기계학습 기법을 이용하여 연구되고 있다. 그러나 많은 연구가 잘 조직된 데이타 집합을 이용하여 연구결과를 보여주고 있으며, 실제 문제에의 응용성에는 큰 비중을 두지 않고 있다. 본 논문에서는 문서분류의 응용시스템인 질의 자동응답시스템에 적용할 수 있는 다중분류기 결합 방법을 제안하고 실제 전자우편 문서의 분류문제를 해결한다. 첫째로, 다중신경 망을 이용한 문서분류를 제안한다. 제안한 방법은 최대값 결합, 신경망 결합을 통해 성능의 향상을 가져온다. 둘째로, 여러 분류기의 결합을 통해 문서분류의 성능을 개선한다. 본 논문에서는 투표 결합방법, Borda 결합, 신경망 결합방법 등을 적용하여 여러 분류기의 결합을 수행하였다. 실용 가능성을 분석한 실험결과 90%이상의 정확율을 보여 제안한 방법이 실용적일 수 있음을 알 수 있었다.

EPAR V2.0: AUTOMATED MONITORING AND VISUALIZATION OF POTENTIAL AREAS FOR BUILDING RETROFIT USING THERMAL CAMERAS AND COMPUTATIONAL FLUID DYNAMICS (CFD) MODELS

  • Youngjib Ham;Mani Golparvar-Fard
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.279-286
    • /
    • 2013
  • This paper introduces a new method for identification of building energy performance problems. The presented method is based on automated analysis and visualization of deviations between actual and expected energy performance of the building using EPAR (Energy Performance Augmented Reality) models. For generating EPAR models, during building inspections, energy auditors collect a large number of digital and thermal imagery using a consumer-level single thermal camera that has a built-in digital lens. Based on a pipeline of image-based 3D reconstruction algorithms built on GPU and multi-core CPU architecture, 3D geometrical and thermal point cloud models of the building under inspection are automatically generated and integrated. Then, the resulting actual 3D spatio-thermal model and the expected energy performance model simulated using computational fluid dynamics (CFD) analysis are superimposed within an augmented reality environment. Based on the resulting EPAR models which jointly visualize the actual and expected energy performance of the building under inspection, two new algorithms are introduced for quick and reliable identification of potential performance problems: 1) 3D thermal mesh modeling using k-d trees and nearest neighbor searching to automate calculation of temperature deviations; and 2) automated visualization of performance deviations using a metaphor based on traffic light colors. The proposed EPAR v2.0 modeling method is validated on several interior locations of a residential building and an instructional facility. Our empirical observations show that the automated energy performance analysis using EPAR models enables performance deviations to be rapidly and accurately identified. The visualization of performance deviations in 3D enables auditors to easily identify potential building performance problems. Rather than manually analyzing thermal imagery, auditors can focus on other important tasks such as evaluating possible remedial alternatives.

  • PDF

Evaluation of Machine Learning Algorithm Utilization for Lung Cancer Classification Based on Gene Expression Levels

  • Podolsky, Maxim D;Barchuk, Anton A;Kuznetcov, Vladimir I;Gusarova, Natalia F;Gaidukov, Vadim S;Tarakanov, Segrey A
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권2호
    • /
    • pp.835-838
    • /
    • 2016
  • Background: Lung cancer remains one of the most common cancers in the world, both in terms of new cases (about 13% of total per year) and deaths (nearly one cancer death in five), because of the high case fatality. Errors in lung cancer type or malignant growth determination lead to degraded treatment efficacy, because anticancer strategy depends on tumor morphology. Materials and Methods: We have made an attempt to evaluate effectiveness of machine learning algorithms in the task of lung cancer classification based on gene expression levels. We processed four publicly available data sets. The Dana-Farber Cancer Institute data set contains 203 samples and the task was to classify four cancer types and sound tissue samples. With the University of Michigan data set of 96 samples, the task was to execute a binary classification of adenocarcinoma and non-neoplastic tissues. The University of Toronto data set contains 39 samples and the task was to detect recurrence, while with the Brigham and Women's Hospital data set of 181 samples it was to make a binary classification of malignant pleural mesothelioma and adenocarcinoma. We used the k-nearest neighbor algorithm (k=1, k=5, k=10), naive Bayes classifier with assumption of both a normal distribution of attributes and a distribution through histograms, support vector machine and C4.5 decision tree. Effectiveness of machine learning algorithms was evaluated with the Matthews correlation coefficient. Results: The support vector machine method showed best results among data sets from the Dana-Farber Cancer Institute and Brigham and Women's Hospital. All algorithms with the exception of the C4.5 decision tree showed maximum potential effectiveness in the University of Michigan data set. However, the C4.5 decision tree showed best results for the University of Toronto data set. Conclusions: Machine learning algorithms can be used for lung cancer morphology classification and similar tasks based on gene expression level evaluation.

새떼 이동의 모방에 의한 k-평균 군집 속도의 향상 (Enhancement of the k-Means Clustering Speed by Emulation of Birds' Motion in Flock)

  • 이창영
    • 한국전자통신학회논문지
    • /
    • 제9권9호
    • /
    • pp.965-970
    • /
    • 2014
  • K-평균 군집에서 수렴 속도를 향상시키기 위한 노력으로서, 우리는 새떼 이동의 개념을 도입한다. 그들 운동의 특징은 각 새가 그의 가장 가까운 이웃을 쫓아간다는 것이다. 우리는 군집 과정에 이 특징을 활용한다. 일단 한 벡터의 클래스가 결정되면, 그 근처의 몇 벡터들에게 동일한 클래스가 부여된다. 실험 결과 군집 종결에 필요한 계산 반복 횟수가 종전 방법에 비해 유의미하게 작은 것으로 나타났다. 게다가 단일 반복 계산에 소요되는 시간이 5% 이상 짧았다. 벡터와 센트로이드 사이의 거리를 누적한 값으로 군집의 품질을 평가한 바, 본 논문에서 제안한 방법과 종전 방법과의 차이는 거의 없었다. 결론적으로, 본 논문에서 제안한 방법에 의해, 보다 짧은 계산 시간으로 질적 하락 없는 군집을 수행할 수 있었다.

경관의 지수화 및 시각화 기법을 활용한 대전광역시 녹지비오톱 파편화 분석 (Fragmentation Analysis of Daejeon City's Green Biotope Using Landscape Index and Visualization Method)

  • 김진효;나정화;이순주;권오성;조현주;이은재
    • 한국환경복원기술학회지
    • /
    • 제19권3호
    • /
    • pp.29-44
    • /
    • 2016
  • The purpose of this study is to quantitatively and visually analyze the degree of green biotope fragmentation caused by road construction and other development work using FRAGSTATS and GUIDOS tool. Moreover, linking of the endangered species research, we mapped "Biotope Fragmentation Map" of Daejeon-city. The findings of the study are summarized as follows: First, as the result of FRAGSTATS, landscape indices : number of patch(NP), mean patch size (MPS), edge length(TE), mean nearest neighbor distance(MNN), edge shape(LSI) showed meaningful change from fragmentation. Moreover, the result of GUIDOS analysis, middle core-small core-bridge-branch-edge-islet-perforation showed increase of area percentage without large core. Lastly, analysis result of 'Biotope Fragmentation Map' revealed that changing site of large core's size appeared eighteen-site and designated as the special protection area appeared forty-one site. As the result of the two data, overlapping areas that showed both change of core size and revealed special protection areas revealed four site. For example, five species of endangered species appeared on the NO. 4 site in 'Biotope Fragmentation Map'. The findings of this study as summarized above are considered to play an important role in basic data preventing green biotope fragmentation at the planned level from various development work.

지능형 IoT 미러 시스템을 활용한 인터랙티브 콘텐츠 서비스 구현 (Development of Interactive Content Services through an Intelligent IoT Mirror System)

  • 정원석;서정욱
    • 한국항행학회논문지
    • /
    • 제22권5호
    • /
    • pp.472-477
    • /
    • 2018
  • 본 논문에서는 지능형 IoT (internet of things) 미러 시스템을 통해 사용자의 우울증 예방을 위한 인터랙티브 콘텐츠 서비스를 구현한다. 인터랙티브 콘텐츠 서비스를 위해 IoT 미러 장치는 뇌파 헤드셋 디바이스로부터 집중도 및 명상도 데이터를 측정하고, 웹캠을 통해 다층 퍼셉트론 알고리즘으로 분류된 "슬픔", "분노", "혐오감", "중립", "행복" 및 "놀람"과 같은 표정 데이터를 측정한 후, oneM2M 표준을 준용한 IoT 서버로 전송한다. IoT 서버에 수집된 데이터는 제안한 병합 레이블링 과정을 거쳐 세 가지의 우울 단계(RED, YELLOW, GREEN)를 분류하는 기계학습 모델을 생성한다. 실험을 통해 k-최근접 이웃 모델로 우울 단계를 분류한 결과 약 93%의 정확도를 얻을 수 있었고, 분류된 우울 단계에 따라 가족, 친구 및 사회복지사에게 소셜 네트워크 서비스 에이전트를 통해 알림 메시지를 전송하여 사용자와 보호자 간의 인터랙티브 콘텐츠 서비스를 구현하였다.

경항통 설문지를 이용한 한의학적 진단 및 분류체계에 관한 연구 (Research on Oriental Medicine Diagnosis and Classification System by Using Neck Pain Questionnaire)

  • 송인;이건목;홍권의
    • Journal of Acupuncture Research
    • /
    • 제28권3호
    • /
    • pp.85-100
    • /
    • 2011
  • Objectives : The purpose of this thesis is to help the preparation of oriental medicine clinical guidelines for drawing up the standards of oriental medicine demonstration and diagnosis classification about the neck pain. Methods : Statistical analysis about Gyeonghangtong(頸項痛), Nakchim(落枕), Sagyeong(斜頸), Hanggang (項强) classified experts' opinions about neck pain patients by Delphi method is conducted by using oriental medicine diagnosis questionnaire. The result was classified by using linear discriminant analysis (LDA), diagonal linear discriminant analysis (DLDA), diagonal quadratic discriminant analysis (DQDA), K-nearest neighbor classification (KNN), classification and regression trees (CART), support vector machines (SVM). Results : The results are summarized as follows. 1. The result analyzed by using LDA has a hit rate of 84.47% in comparison with the original diagnosis. 2. High hit rate was shown when the test for three categories such as Gyeonghangtong and Hanggang category, Sagyeong caterogy and Nakchim caterogy was conducted. 3. The result analyzed by using DLDA has a hit rate of 58.25% in comparison with the original diagnosis. The result analyzed by using DQDA has a accuracy of 57.28% in comparison with the original diagnosis. 4. The result analyzed by using KNN has a hit rate of 69.90% in comparison with the original diagnosis. 5. The result analyzed by using CART has a hit rate of 69.60% in comparison with the original diagnosis. There was a hit rate of 70.87% When the test of selected 8 significant questions based on analysis of variance was performed. 6. The result analyzed by using SVM has a hit rate of 80.58% in comparison with the original diagnosis. Conclusions : Statistical analysis using oriental medicine diagnosis questionnaire on neck pain generally turned out to have a significant result.