• Title/Summary/Keyword: k-Fibonacci sequence

Search Result 38, Processing Time 0.025 seconds

FIBONACCI SEQUENCES IN kTH POWER RESIDUES

  • Chung, Youchan;Jang, Eunyool;Park, Jinseo;Park, Sanghoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.327-334
    • /
    • 2021
  • In this paper, we find all the prime numbers p that satisfy the following statement. If a positive integer k is a divisor of p - 1, then there is a sequence consisting of all k-th power residues modulo p, satisfying the recurrence equation of the Fibonacci sequence modulo p.

FIBONACCI AND LUCAS NUMBERS ASSOCIATED WITH BROCARD-RAMANUJAN EQUATION

  • Pongsriiam, Prapanpong
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.511-522
    • /
    • 2017
  • We explicitly solve the diophantine equations of the form $$A_{n_1}A_{n_2}{\cdots}A_{n_k}{\pm}1=B^2_m$$, where $(A_n)_{n{\geq}0}$ and $(B_m)_{m{\geq}0}$ are either the Fibonacci sequence or Lucas sequence. This extends the result of D. Marques [9] and L. Szalay [13] concerning a variant of Brocard-Ramanujan equation.

Exploratory Approach for Fibonacci Numbers and Benford's Law (피보나치수와 벤포드법칙에 대한 탐색적 접근)

  • Jang, Dae-Heung
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.5
    • /
    • pp.1103-1113
    • /
    • 2009
  • We know that the first digits sequence of fibonacci numbers obey Benford's law. For the sequence in which the first two numbers are the arbitrary integers and the recurrence relation $a_{n+2}=a_{n+1}+a_n$ is satisfied, we can find that the first digits sequence of this sequence obey Benford's law. Also, we can find the stucture of the first digits sequence of this sequence with the exploratory data analysis tools.

ON CONDITIONALLY DEFINED FIBONACCI AND LUCAS SEQUENCES AND PERIODICITY

  • Irby, Skylyn;Spiroff, Sandra
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.1033-1048
    • /
    • 2020
  • We synthesize the recent work done on conditionally defined Lucas and Fibonacci numbers, tying together various definitions and results generalizing the linear recurrence relation. Allowing for any initial conditions, we determine the generating function and a Binet-like formula for the general sequence, in both the positive and negative directions, as well as relations among various sequence pairs. We also determine conditions for periodicity of these sequences and graph some recurrent figures in Python.

ON THE INTERSECTION OF k-FIBONACCI AND PELL NUMBERS

  • Bravo, Jhon J.;Gomez, Carlos A.;Herrera, Jose L.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.535-547
    • /
    • 2019
  • In this paper, by using the lower bound of linear forms in logarithms of Matveev and the theory of continued fractions by means of a variation of a result of Dujella and $Peth{\ddot{o}}$, we find all generalized Fibonacci numbers which are Pell numbers. This paper continues a previous work that searched for Pell numbers in the Fibonacci sequence.

REPRESENTING NATURAL NUMBERS AS UNIQUE SUMS OF POSITIVE INTEGERS

  • Laohakosol, Vichian;Chalermchai, Jiraporn
    • The Pure and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.63-72
    • /
    • 2004
  • It is known that each natural number can be written uniquely as a sum of Fibonacci numbers with suitably increasing indices. In 1960, Daykin showed that the sequence of Fibonacci numbers is the only sequence with this property. Consider here the problem of representing each natural number uniquely as a sum of positive integers taken from certain sequence allowing a fixed number, $\cal{l}\geq2$, of repetitions. It is shown that the $(\cal{l}+1)$-adic expansion is the only such representation possible.

  • PDF

A COMPLETE FORMULA FOR THE ORDER OF APPEARANCE OF THE POWERS OF LUCAS NUMBERS

  • Pongsriiam, Prapanpong
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.447-450
    • /
    • 2016
  • Let $F_n$ and $L_n$ be the nth Fibonacci number and Lucas number, respectively. The order of appearance of m in the Fibonacci sequence, denoted by z(m), is the smallest positive integer k such that m divides $F_k$. Marques obtained the formula of $z(L^k_n)$ in some cases. In this article, we obtain the formula of $z(L^k_n)$ for all $n,k{\geq}1$.

Maximum Power Point Tracking Control Employing Fibonacci Search Algorithm for Photovoltaic Power Generation System

  • Miyatake Masafumi;Kouno Tooru;Nakano Motomu
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.622-625
    • /
    • 2001
  • Photovoltaic generation systems need MPPT (Maximum Power Point Tracking) control because the output power depends on the operating voltage and current. Therefore, many researchers propose various types of MPPT control methods. A new MPPT control scheme is proposed in this paper in order to realize higher efficiency with simple calculation. The line search algorithm with fibonacci sequence which is one of the optimizing method is employed for the MPPT. The line search method is modified for real-time operation. The method is verified by simulations and experiments. It is concluded that the scheme can respond fast variation of irradiance.

  • PDF