• Title/Summary/Keyword: k-$\varepsilon$모델

Search Result 248, Processing Time 0.032 seconds

Analysis of Turbulent Flow in a Square Duct with a $180^{\circ}$ Bend ($180^{\circ}$곡관을 갖는 정사각 단면 덕트에서의 란류류동 해석)

  • Launder, B. E.;Kim, Myung-Ho;Moon, Chan;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.607-621
    • /
    • 1988
  • The paper describes the incorporation of an algebraic stress model(ASM) of turbulence in to a semi-elliptic solution procedure for the prediction of turbulent flow in passage around a 180.deg. square sectioned bend. The numerical results are obtained from a finite-volume discretization with applications of QUICK scheme and full find grid system without PSL approximation. Results show that the better agreements in velocity profiles with experimental data than those from k, $\varepsilon$ equation model with wall function and PSL are obtained. Predictions of Reynolds stresses also show good agreements with the experimental data.

Numerical Calculations of Three-dimensional Viscous Flows over a stern by the Semi-Elliptic Equations (준타원형 방정식에 의한 선미에서의 3차원 점성유동의 수치계산)

  • Shin-Hyoung,Kang;Keon-Je,Oh
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.1
    • /
    • pp.11-23
    • /
    • 1989
  • A computer code has been developed to simulate three-dimensional viscous flows over a ship-stern. Semi-elliptic forms of Reynolds equations are adopted and numerically generated body-fitted coordinate systems are used to resolve complex geometries of the ship-hull. A standard form of $k-\varepsilon$ turbulence model is adopted for evaluation of the Reynolds stresses. Turbulent flows on a model with 3:1 elliptic sections and the SSPA-720 container ship model are predicted by using the code. Calculated pressure distributions of hull-surfaces and mean velocity distributions are generally in good agreements with measured values in wind-tunnels. But turbulent kinetic energies tend to be over-estimated near the stern in comparison with measured data.

  • PDF

Numerical Simulation of Turbulent Heat Transfer in a Channel with One Wavy Wall (파형벽면이 있는 채널내의 난류열전달에 대한 수치해석)

  • Park Tae-Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.49-59
    • /
    • 2005
  • Turbulent heat transfer over a fully-developed wavy channel is investigated by a turbulence model. The nonlinear k- f - f$_{ model of Park et at.[1] is slightly modified and their explicit algebraic heat flux model is employed. The Reynolds number is fixed at Re$_{b}$=6760 and the wave configuration is varied in the range of 0 $\leq$ $\alpha$/$\lambda$$\leq$0.15 and 0.25 $\leq$A/H$\leq$4.0. In order to verify model performances, a large eddy simulation is performed for the selected cases. The model performance is shown to be generally satisfactory. By using k- $\varepsilon$ - f$_{ model, the enhancement of heat transfer and the characteristics of turbulent flow in wavy wall are investigated. Finally, the influence of wavy configuration on heat transfer is scrutinized.

Study of the Secondary Flow Effect on the Turbulent Flow Characteristics in Fuel Rod Bundles (핵연료봉 주위의 난류 유동장 특성에 미치는 이차 유동의 영향에 대한 연구)

  • Lee, Kye-Bock;Jang, Ho-Cheol;Lee, Sang-Keun
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.345-354
    • /
    • 1994
  • Numerical Predictions including secondary flows have been Performed for fully developed turbulent single-phase rod bundle flows. The k-$\varepsilon$ turbulence model(two equation model) for the isotropic eddy viscosity, together with an algebraic stress model for generating secondary velocities, enabled the prediction of mean axial velocities, secondary velocities, and turbulent kinetic energy and turbulent stresses. Comparisons with experiment hate shown that the influence of secondary motion on mean flow and turbulence is dearly evident. The convective transport effects of secondary flow on the velocity field have been identified.

  • PDF

Preparations and Release Property of Poly(ε-caprolacton)/ethyl cellulose Microcapsule Containing Pluronic F127 (Pluronic F127을 함유하는 Poly(ε-caprolacton)/ethyl cellulose 마이크로 캡슐의 제조 및 방출 특성)

  • Hong, Yeon Ji;Kim, Jin-Chul
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.632-637
    • /
    • 2009
  • Poly(${\varepsilon}-caprolacton$)/ethyl cellulose (PCL/EC) microcapsules containing pluronic F127 were prepared by a spray drying method. The aqueous phase, 20% of pluronic F127 was dissolved in distilled water, and the organic phase, 5% of PCL and EC were dissolved in dichloromethane. The microcapsules were obtained by spray drying the water-in-oil (W/O) emulsion. According to the data of scanning electron microscopy and particle analyzer, tens of micro size microcapsules were observed. On a differential scanning calorimeter, the phase transition temperatures of microcapsules were observed and they were found around those of pluronic F127 and poly(${\varepsilon}-caprolacton$), which were the main components of the microcapsules. At the range of $30{\sim}45^{\circ}C$, temperature-dependent release properties were investigated using fluorescein isothicyanate-dextran (FITC-dextran) and blue dextran as a model drug. When the temperature was increased, the degree of release of microcapsule was also increased. FITC-dextran, the relative low molecular weight, was more released than blue-dextran.

Numerical Analysis on the Effect of High-Shear in a Rotor-Stator Mixer (Rotor-Stator Mixer 전단효과에 관한 수치 해석적 연구)

  • Yeum, Sang Hoon;Lee, Seok Soon
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.39-48
    • /
    • 2019
  • The turbulent flow in the rotor-stator mixer is based on shear characteristics generated by the interaction of the stator with the rotor rotating at high speed. In this study, the flow characteristics analysis of the unsteady state generated by the interaction of the rotor and the stator in the prototype model of the emulsion-fuel related mixer development was performed with the MRF and SMM by applying the ANSYS FLUENT $k-{\varepsilon}$ (RKE) turbulence model. The behavior and shear characteristics of the flow particles generated at the interface between the designed rotor and stator, and trends such as velocity distribution and turbulence eddy dissipation, were predicted and verified using the CFD analysis.

Non Linear Viscoelastic Constitutive Relation of Elastomers for Hysteresis Behavior (히스테리시스 거동을 하는 탄성체의 비선형 점탄성 구성방정식)

  • Yoo, Sairom;Ju, Jaehyung;Choi, Seok-Ju;Kim, Dooman
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.353-362
    • /
    • 2016
  • An accurate hysteresis model of an elastomer is important for quantifying viscoelastic energy loss. We suggest a highly nonlinear hyper-viscoelastic constitutive model of elastomers. The model captures a nonlinear viscoelastic characteristic by combining Yeoh's hyperelastic model and Hoofatt's hysteresis model used Neo-Hookean hyperelastic model. Analytical and numerical models were generated from uniaxial cyclic tests of an elastomer under a sinusoidal load with a mean strain of 150%, amplitudes of 20~80%, and frequencies of 0.02~0.2Hz. The viscoelastic model can highly capture the viscoelastic energy loss up to a strain of 230%.

Redeveloping Turbelent Boundary Layer after Separation-Reattachment(II) -A Consideration on Turbulence Models- (박리-재부착 이후의 재발달 난류경계층 II -난류 모델들에 관한 고찰-)

  • 백세진;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.999-1011
    • /
    • 1989
  • A consideration on the trubulence models for describing the redeveloping turbulent boundary layer beyond separation-reattachment in the flow over a backward-facing step is given through experimental and numerical studies. By considering the blance among the measured values of respective terms in the transport equations for the turbulent kinetic energy and the turbulent shear stress, the recovering process of the redeveloping boundary layer from non-equilibrium to equilibrium has been investigated, which takes place slowly over a substantial distance in the downstream direction. In the numerical study, the standard K-.epsilon. model and the Reynolds stress model have been applied to two kinds of flow regions, one for the entire downstream region after the backward-facing step and another for the downstream region after reattachment. Then the results are compared to a meaningful extent, with the experimental values of the turbulent kinetic energy k, the turbulent energy production term P, the dissipation term K-.epsilon. model, a necessity for a new modelling has been brought forward, which can be also applied to the case of the nonequlibrium turbulent flow.

Frequency Characteristics of Anodic Oxide Films on Tantalum

  • Lee, Dong-Nyung;Yoon, yong-Ku
    • Nuclear Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.30-37
    • /
    • 1973
  • The Nishitani's equations for impedance of anodic oxide films have been derived based on a p-i-n model under the assumption of $\omega$$\varepsilon$$\rho$$_{ο}$<<4$\pi$<<$\omega$$\varepsilon$$\rho$$_{\omega}$, where $\omega$ is angular frequency, $\varepsilon$ is dielectric constant, and $\rho$$_{ο}$ and $\rho$$_{\omega}$ are the resistivity of the interface region and the intrisic region of the anodic oxide film, respectively. Since it is not possible to evaluate all parameters in the equations, however, any clear physical picture cannot be obtained from the equations. Therefore, the equations are modified under the assumption of $\omega$$\tau$$_{\omega}$>>1 and In(1+$\omega$$^2$$\tau$$_{ο}$$^2$)<<1, where $\tau$$_{\omega}$=$\varepsilon$$\rho$$_{\omega}$(4$\pi$) and $\tau$$_{ο}$=$\varepsilon$$\rho$$_{ο}$/(4$\pi$). The modified equations are then used to explain the change in the frequency characteristics of anodic oxide films when they are heated. The change in impedance of anodic oxide films when they are heated is attributed mainly to the increase in the diffusion layer and to the decrease in the resistivity of anodic oxide films.s.

  • PDF

Modeling for gaseous methane/liquid oxygen combustion processes at supercritical pressure (초임계 압력상태의 기체메탄/액체산소 연소과정 해석)

  • Kim, Tae-Hoon;Kim, Yong-Mo;Kim, Seong-Ku
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.85-88
    • /
    • 2010
  • This study has been mainly motivated to numerically model the supercritical mixing and combustion processes encountered in the liquid propellant rocket engines. In the present approach, turbulence is represented by the extended $k-{\varepsilon}$ turbulence model. To account for the real fluid effects, the propellant mixture properties are calculated by using SRK (Souve-Redlich-Kwong) equation of state. In order to realistically represent the turbulence-chemistry interaction in the turbulent nonpremixed flames, the flamelet approach based on the real fluid flamelet library has been adopted. Based on numerical results, the detailed discussions are made for the real fluid effects and the precise structure of gaseous methane/liquid oxygen coaxial jet flame.

  • PDF