데이터베이스에 내재된 패턴이나 관계를 묘사한 것만으로도 의사결정에 필요한 정보를 제공할 수 있는데 이 데이터들의 변수들을 비슷한 특징을 가지는 소그룹으로 나누어 패턴을 찾는 것을 군집분석이라 한다. 이러한 군집 분석에는 분리군집방법과 계층적군집방법이 있는데, 재할당이 가능한 분리군집방법의 여러 알고리즘에 대해 비교해보자. 분리군집알고리즘에는 중심을 평균으로 하는 k-평균 알고리즘과, 중심을 메도이드로하는 PAM, CLARA, CLARANS 알고리즘이 있다. 이러한 알고리즘에 대한 이론과, 장단점을 설명하고, 분산과 중심들간의 평균 거리로 비교해 본다.
The least mean fourth (LMF) adaptive algorithm is a stochastic gradient method that minimizes the error in the mean fourth sense. Despite its potential advantages, the algorithm is much less popular than the conventional least mean square (LMS) algorithm in practice. This seems partly because the analysis of the LMF algorithm is much more difficult than that of the LMS algorithm, and thus not much still has been known about the algorithm. In this paper, we explore the statistical convergence behavior of the LMF algorithm when the input to the adaptive filter is zero-mean, wide-sense stationary, and Gaussian. Under a system idenrification mode, a set of nonlinear evolution equations that characterizes the mean and mean-squared behavior of the algorithm is derived. A condition for the conbergence is then found, and it turns out that the conbergence of the LMF algorithm strongly depends on the choice of initial conditions. Performances of the LMF algorithm are compared with those of the LMS algorithm. It is observed that the mean convergence of the LMF algorithm is much faster than that of the LMS algorithm when the two algorithms are designed to achieve the same steady-state mean-squared estimation error.
본 논문에서는 기존의 정렬 알고리즘의 성능을 향상시키기 위하여 정보블록 전처리 알고리즘(IBPA)이라는 전처리알고리즘을 제안한다. IBPA는 정렬될 리스트(list)에 있는 데이터에 관한 정보를 생성하고, 생성된 정보를 이용하여 각 데이터를 재배치하며, 실제적인 정렬은 기존의 정렬 알고리즘을 그대로 이용하여 이루어진다. IBPA의 성능을 측정해본 결과, 2백만개의 랜덤데이터를 정렬한 경우, O($N^2$)의 평균시간복잡도를 갖는 정렬알고리즘의 0.003%, O(NlogN) 의 평균시간복잡도를 갖는 정렬알고리즘의 52%, 그리고 O(N)의 평균시간복잡도를 갖는 정렬알고리즘의 89%정도의 비교회수만으로도 정렬할 수 있음을 보여주었다.
본 연구에서는 3상이 불평형된 전원 조건하에서 비선형 부하전류를 유효성분, 기본파 무효성분 그리고 왜 형성분으로 분해한 후, 능동전력필터를 제어할 수 있는 새로운 평균전력 알고리즘을 제시하였다. 제안된 방법의 타당성을 입증하기 위해, $15\%$ 불평형된 3상 전원 전압하에서 실험을 수행하였으며, 종전의 평균전력 알고리즘에 비하여 새로운 평균전력 알고리즘의 유용성을 입증할 수 있었다.
본 논문에서는 H.264 표준화 기구인 Joint Video Team(JVT) 권고안의 정수 단위 화소 움직임 예측을 위한 Unsymmetrical-cross Multi-Hexagon-grid Search(UMHexagonS) 알고리즘에서 Uneven Multi-Hexagon-grid Search(UMHGS) 부분을 개선한 알고리즘을 제안한다. 제안하는 알고리즘은 이전 프레임의 동일위치 또는 상위 모드에서 이미 선택된 움직임 벡터(MV: Motion Vector)를 이용하여 신호 대 잡음 비(PSNR: Peak Signal to Noise Ratio) 및 평균 비트 율(Average Bitrates)을 유지하면서, 현재 매크로블록의 검색영역을 줄이는 것이 가능하다. 제안하는 알고리즘의 성능은 Full Search Block Matching Algorithm(FSBMA) 및 UMHexagonS 알고리즘의 integer pel 에 대한 SAD(Sum of Absolute Difference) 연산횟수로 비교평가 하였다. 그 결과, FSBMA 에 비하여 평균 97.64%, UMHexagonS 에 비하여는 평균 17.48%의 연산횟수를 감소시키는 우수함을 보였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2010.11a
/
pp.233-235
/
2010
영상 압축은 멀티미디어 실시간 전송에 있어서 핵심적인 기술이다. 동영상 압축 기술 중 움직임 예측 부분은 가장 계산량이 많고 가장 복잡한 부분으로 실시간 전송을 위해서는 고속 알고리즘이 필요한 부분이다. 본 논문은 기존의 움직임 예측 알고리즘의 하나인 이진 블록 정합 움직임 예측 알고리즘 중 2bit 변환을 개선하여 더욱 빠른 알고리즘을 제안한다. 기존의 2bit 변환 알고리즘은 현재 프레임과 이전 프레임의 블록에 윈도우를 씌어 각 프레임의 윈도우에서 구한 평균과 표준편차를 가지고 각각 2bit 변환을 하였다. 그러나 본 논문은 현재 프레임과 이전 프레임의 블록에 윈도우를 씌우고 현재 프레임의 윈도우에서 구한 평균과 표준편차를 이전 프레임에 적용을 시켜 같은 평균과 표준편차를 이용하여 기존의 알고리즘을 개선한다. 제안하는 알고리즘은 계산량의 감소와 동시에 화질을 유지시킨다.
본 논문에서는 기존에 제시된 수정된 K-평균 방법을 이용한 VQ 학습 알고리즘을 분석하고, 보다 개선된 성능을 보이는 학습 알고리즘을 제안한다. 수정된 K-평균 학습 알고 리즘은 자기 집단에 속하는 데이터의 중심을 데이터의 중심을 새로운 코드워드로 삼는 것이 아니라 현재 코드워드와 새로 구한 집단의 중심을 연결한 선상에서 새로 구한 중심 너머의 일정한 점을 새로운 코드워드로 선택하는 방식이다. 본 논문에서는 이렇게 구한 새로운 코 드워드가 어떠한 조건을 만족할 때 알고리즘이 반복적 감소의 성질을 가지는지 살펴보고, 그 조건을 만족시키는 영역 중 기존의 방식보다 더 좋은 성능을 보이는 코드워드 선택법을 제시함으로써 개선된 학습 알고리즘을 제안한다.
In this paper, we propose a modified FCM (MFCM) algorithm to solve the problems of the FCM algorithm and the fuzzy clustering algorithm using an average intracluster distance (FCAID). The MFCM algorithm grants the regular grade of membership in the small size of cluster. And it clears up the convergence problem of objective function because its objective function is designed according to the grade of membership of it, verified, and used for clustering data. So, it can solve the problem of the FCM algorithm in different size of cluster and the FCAID algorithm in the convergence problem of objective function. To verify the MFCM algorithm, we compared with the result of the FCM and the FCAID algorithm in data clustering. From the experimental results, the MFCM algorithm has a good performance compared with others by classification entropy.
The proposed hybrid algorithm combines the benefits of rapid convergence property of mean filed annealing(MFA) and the effective genetic operations of simulated annealing-like genetic algorithm(SGA). This algorithm is applied to the isotropic material stock cutting problem, especially to glass cutting in distributed computing environments base on MPI called message passing interface. The glass cutting is to place the required rectangular patterns to the given large glass sheets resulting in reducing the wasted scrap area. Our experimental results show that the heuristic method improves the performance over the conventional ones by decreasing the scrap area and maximum execution time. It is also proved that the proposed distributed algorithm maintains the convergence properties of sequential one while it achieves almost linear speedup as the problem size increases.
현실 세계의 많은 조합 최적화 문제들은 변수들이 강하게 상호 작용함에 따라 만족해야하는 목표 함수가 매우 복잡하게 주어진다. 복잡한 목표 함수에는 많은 지역 최적해들이 존재하기 때문에 전역 최적해를 얻는 것은 엄청난 시간을 필요로 한다. 이러한 문제에 대해 해를 찾는 방법의 하나로 평균장 어닐링 알고리즘(MFA)이 있다. 본 논문에서는 기존의 이진 상태 공간에만 적용할 수 있었던 평균장 어닐링 알고리즘을 연속 상태 공간을 갖는 조합 최적화 문제에 적용할 수 있도록 알고리즘을 수정, 제안한다. 그리고 제안된 알고리즘을 제한된 연속 상태 공간을 가지는 단순 회귀 모델의 D-최적 설계에 적용하였다. 실험결과 제안된 알고리즘이 시뮬레이티드 어닐링 알고리즘(SSA)과 비교하여 비슷한 수준의 결과를 내면서도 계산 속도면에서는 수 배 정도의 빠른 좋은 결과를 얻었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.