• Title/Summary/Keyword: jump detector

Search Result 6, Processing Time 0.021 seconds

Bootstrap Bandwidth Selection Methods for Local Linear Jump Detector

  • Park, Dong-Ryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.4
    • /
    • pp.579-590
    • /
    • 2012
  • Local linear jump detection in a discontinuous regression function involves the choice of the bandwidth and the performance of a local linear jump detector depends heavily on the choice of the bandwidth. However, little attention has been paid to this important issue. In this paper we propose two fully data adaptive bandwidth selection methods for a local linear jump detector. The performance of the proposed methods are investigated through a simulation study.

Bandwidth Selection for Local Smoothing Jump Detector

  • Park, Dong-Ryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.6
    • /
    • pp.1047-1054
    • /
    • 2009
  • Local smoothing jump detection procedure is a popular method for detecting jump locations and the performance of the jump detector heavily depends on the choice of the bandwidth. However, little work has been done on this issue. In this paper, we propose the bootstrap bandwidth selection method which can be used for any kernel-based or local polynomial-based jump detector. The proposed bandwidth selection method is fully data-adaptive and its performance is evaluated through a simulation study and a real data example.

Comparison of Jump-Preserving Smoothing and Smoothing Based on Jump Detector

  • Park, Dong-Ryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.3
    • /
    • pp.519-528
    • /
    • 2009
  • This paper deals with nonparametric estimation of discontinuous regression curve. Quite number of researches about this topic have been done. These researches are classified into two categories, the indirect approach and direct approach. The major goal of the indirect approach is to obtain good estimates of jump locations, whereas the major goal of the direct approach is to obtain overall good estimate of the regression curve. Thus it seems that two approaches are quite different in nature, so people say that the comparison of two approaches does not make much sense. Therefore, a thorough comparison of them is lacking. However, even though the main issue of the indirect approach is the estimation of jump locations, it is too obvious that we have an estimate of regression curve as the subsidiary result. The point is whether the subsidiary result of the indirect approach is as good as the main result of the direct approach. The performance of two approaches is compared through a simulation study and it turns out that the indirect approach is a very competitive tool for estimating discontinuous regression curve itself.

Performance Analysis of the Packet DS/SS Receiver using the BSP Methods (패킷 대역 확산 블록 수신기의 성능 분석)

  • 양대웅;강민구;박성경;홍대식;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.1
    • /
    • pp.47-55
    • /
    • 1994
  • This paper investigates the performance analysis of the packet DS/SS receiver with a PJED(phase-jump error detector) using the block signal processing(BSP) methods. The conventional packet DS/SS block receiver has a high probability of mistaking the phase-jump detection, which causes the frequency estimation error. The conventional receiver uses a Matched-Pulse Timing Extractor which has a complicated structure. The proposed packet DS/SS block receiver with the PJED which uses libearity of the phase has little probability of mistaking the phase-jump detection. The proposed Matched Pulse Timing Extractor gas the more simple structure but obtains the same performance on the exact matched-pluse timing as the conventional one does. The simulation results show that the proposed receiver gives about 2dB improvement in the BER compared with the conventional receiver.

  • PDF

Comparison of Nonparametric Function Estimation Methods for Discontinuous Regression Functions

  • Park, Dong-Ryeon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.6
    • /
    • pp.1245-1253
    • /
    • 2010
  • There are two main approaches for estimating the discontinuous regression function nonparametrically. One is the direct approach, the other is the indirect approach. The major goal of the two approaches are different. The direct approach focuses on the overall good estimation of the regression function itself, whereas the indirect approach focuses on the good estimation of jump locations. Apparently, the two approaches are quite different in nature. Gijbels et al. (2007) argue that the comparison of two approaches does not make much sense and that it is even difficult to choose an appropriate criterion for comparisons. However, it is obvious that the indirect approach also has the regression curve estimate as the subsidiary result. Therefore it is necessary to verify the appropriateness of the indirect approach as the estimator of the discontinuous regression function itself. Park (2009a) compared the performance of two approaches through a simulation study. In this paper, we consider a more general case and draw some useful conclusions.

Fast Single-Phase All Digital Phase-Locked Loop for Grid Synchronization under Distorted Grid Conditions

  • Zhang, Peiyong;Fang, Haixia;Li, Yike;Feng, Chenhui
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1523-1535
    • /
    • 2018
  • High-performance Phase-Locked Loops (PLLs) are critical for grid synchronization in grid-tied power electronic applications. In this paper, a new single-phase All Digital Phase-Locked Loop (ADPLL) is proposed. It features fast transient response and good robustness under distorted grid conditions. It is designed for Field Programmable Gate Array (FPGA) implementation. As a result, a high sampling frequency of 1MHz can be obtained. In addition, a new OSG is adopted to track the power frequency, improve the harmonic rejection and remove the dc offset. Unlike previous methods, it avoids extra feedback loop, which results in an enlarged system bandwidth, enhanced stability and improved dynamic performance. In this case, a new parameter optimization method with consideration of loop delay is employed to achieve a fast dynamic response and guarantee accuracy. The Phase Detector (PD) and Voltage Controlled Oscillator (VCO) are realized by a Coordinate Rotation Digital Computer (CORDIC) algorithm and a Direct Digital Synthesis (DDS) block, respectively. The whole PLL system is finally produced on a FPGA. A theoretical analysis and experiments under various distorted grid conditions, including voltage sag, phase jump, frequency step, harmonics distortion, dc offset and combined disturbances, are also presented to verify the fast dynamic response and good robustness of the ADPLL.