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Abstract
Local smoothing jump detection procedure is a popular method for detecting jump locations and the per-

formance of the jump detector heavily depends on the choice of the bandwidth. However, little work has been
done on this issue. In this paper, we propose the bootstrap bandwidth selection method which can be used for
any kernel-based or local polynomial-based jump detector. The proposed bandwidth selection method is fully
data-adaptive and its performance is evaluated through a simulation study and a real data example.
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1. Introduction

Nonparametric regression analysis for the estimation of the discontinuous regression function has
received much attention over the years. Quite a number of researches on this topic have been done.
These researches may be classifies into two categories. The first approach, which is usually called
jump-preserving smoothing, estimates the regression function directly without detecting the jump
points explicitly. Reference on this approach includes Chu et al. (1998), Rue et al. (2002), Polzehl
and Spokoiny (2000), Qiu (2003) and Gijbels et al. (2007), among others.

The second approach estimates the location of jump points first using one of various jump detec-
tion procedures and then applies the ordinary smoothing technique to each smooth part of regression
curve separately. In this approach, many of jump detectors are based on kernel-based estimation meth-
ods or local polynomial estimation methods. The literature on this approach includes Müller (1992),
Wu and Chu (1993), Qiu et al. (1991), Gijbels et al. (1999) and Park (2008), among others.

The major issue of the second approach is to obtain good estimates of jump locations. Once
we have correct estimates of jump locations, we have a good chance of getting accurate estimate of
regression function. Thus excellent performance of jump detector is crucial and it is quite clear that if
the jump detector is based on kernel-based or local polynomial-based method, then the performance
of the jump detector heavily depends on the choice of the bandwidth. Therefore, the bandwidth
selection method for jump detector is really important issue for the second approach, but little work
has been done on this issue. Gijbels and Goderniaux (2004) proposed the bootstrap procedure for
selecting bandwidth for the jump detection procedure of Gijbels et al. (1999), but their method is
rather complicated.

In this paper, we propose the bandwidth selection method which can be used for any kernel-based
or local polynomial-based jump detector. Our bandwidth selection method is based on the bootstrap,
but it is much simpler than Gijbels and Goderniaux (2004).
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2. Bandwidth Selection Method

2.1. New measure of performance for local smoothing jump detector

Suppose we want to estimate the regression function m using a sample of n data {(xi,Yi), i = 1, . . . , n}
generated from model (2.1).

Yi = m(xi) + εi, i = 1, . . . , n (2.1)

where εi’s are independent and identically distributed with mean 0 and finite variance σ2. We assume
that the regression function m can be expressed by

m(x) = g(x) +

p∑

j=1

d jI(x > s j)

where g is a continuous function in the entire design interval, p is the number of jump points,
{s j, j = 1, . . . , p} are the jump positions, and {d j, j = 1, . . . , p} are jump magnitudes. Without loss of
generality, we assume that m is defined on the interval [0,1]. We also assume that the design points xi

are equally spaced on [0,1]. Throughout the paper, we assume p = 1. The extension of the proposed
bandwidth selection method to the case of unknown p seems straightforward, but we do not deal with
it in this paper.

The common procedure of the local smoothing jump detector is to fit nonparametrically smooth
curves to the left and to the right of given point, and the basic information of the presence of a jump
discontinuity is contained in the difference between the left fit and the right fit. For example, the jump
detector proposed by Park (2009) is defined by standardizing the difference as follows.

T (x) =
m̂+(x) − m̂−(x)√

Var (m̂+(x) − m̂−(x))
(2.2)

where m̂+(x) and m̂−(x) is the local linear right-sided estimator and the local linear left-sided estimator
by using the data lying to right and left of x, respectively. Here x should be located inside of [h, 1−h],
and it means that the local smoothing jump detection procedures have the “boundary problem” in the
sense that they can not detect jumps in the border regions of the design interval which are [0, h] and
[1 − h, 1]. Now the estimator ŝ1 of jump location s1 is defined as

ŝ1 = arg max
x∈[h,1−h]

|T (x)|

It is common to measure the closeness of the estimator ŝ1 to its target parameter s1 by MSE(ŝ1) =

E(ŝ1 − s1)2. The possible approach for the choice of the value of bandwidth h is based on the analog
of the MSE. The jump detector proposed by Wu and Chu (1993) is based on the Gasser-Müller esti-
mator. They derived the asymptotic mean squared error(AMSE) of ŝ1 and tried to obtain the optimal
bandwidth by minimizing AMSE, but they failed. Besides, they assumed that s1 ∈ [δ, 1 − δ] where
δ > 0 is arbitrary small constant. We do not have the exact expression of the AMSE(ŝ1) for any other
existing jump detectors including T (x) of (2.2) yet, so it seems that the asymptotic approach for the
choice of the value of h is not available for now.

The alternative to the asymptotic approach may be Monte Carlo simulation. We investigate the
finite sample properties of MSE(ŝ1). Figure 1 displays the Monte Carlo MSE(ŝ1) for various h based
on 2000 repeated samples for the following model.

Yi = x2
i + 0.5 · I(xi ≥ 0.5) + εi, i = 1, . . . , n, (2.3)
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Figure 1: Left panel: typical data set and true regression curve of model (2.3). Right panel: Monte Carlo MSE(ŝ1)
for various h.

where n = 50, xi = (i − 1)/(n − 1), and εi’s are independent and normally distributed with mean 0
and standard deviation σ = 0.2. As we can see, the Monte Carlo MSE(ŝ1) is a decreasing function of
h. We have tried several different models and we have found that the pattern of Figure 1 is universal.
Thus according to the Monte Carlo approach, we should choose the value of h as large as possible,
but this is a kind of contradictory result with Wu and Chu (1993). Even though they failed to derive
the optimal bandwidth, they argued that the optimal value of h is of the minimum order of the value
of h satisfying some regularity condition.

This contradiction may be caused by the different assumption about the border region. In Wu and
Chu (1993), the border regions are [0, δ] and [1 − δ, 1], so the length of the border region is fixed.
However, in our paper, the length of border region is increasing with h. That is to say, we assume
that the local smoothing jump detector can detect the jump points only if they are located inside of
[h, 1 − h]. Thus it is always true that h ≤ ŝ1 ≤ 1 − h, so large value of h reduces the range of ŝ1 and it
has a direct effect on large reduction of the Monte Carlo Var(ŝ1) and this also entails large reduction
of the Monte Carlo MSE(ŝ1) as long as s1 ∈ [h, 1 − h]. Therefore, we should penalize the large value
of h for computing MSE(ŝ1). In this point of view, we propose the new measure of performance for
the local smoothing jump detector. We define the penalized mean squared error(PMSE) as follows.

PMSE = log
[
E(ŝ1 − s1)2

]
+

λ

log(n)(1 − 2h)
. (2.4)

In the second term of PMSE, the constant λ controls the amount of penalization, (1 − 2h) is the range
of ŝ1, and log(n) is used as a kind of weight. The choice of h usually depend on n. When n is small
we usually prefer to select large value of h in order to get more information. Thus, by using log(n) as
a weight, we can give more penalty to the case of smaller n for selecting larger value of h.

We do not obtain any theoretical results about PMSE yet, but through the Monte Carlo simulation
we investigate the finite sample properties of PMSE. With the model (2.3), the Monte Carlo PMSE(ŝ1)
based on 2000 repeated samples for n = 50 with 4 different values of λ are displayed in Figure 2. Note
that both λ = 10 and λ = 15 provide almost identical pattern of the Monte Carlo PMSE(ŝ1). During
the simulation, we have found that the Monte Carlo PMSE(ŝ1) shows almost identical pattern with
quite wide rage of λ, and λ = 10 always provides satisfactory results. Thus we decided to choose
λ = 10 throughout the paper.

As we can see in Figure 2, the Monte Carlo PMSE(ŝ1) has a global minimum point. Therefore,
it is possible to select the value of h by minimizing PMSE(ŝ1). Even though we have verified that
PMSE(ŝ1) has a global minimum through simulation study, we are not quite sure yet whether the
value of h which minimized PMSE(ŝ1) is really ‘good’ bandwidth. This is about the appropriateness
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Figure 2: Monte Carlo PMSE(ŝ1) for various h and λ for model (2.3).

of PMSE as a measure of performance. Because of above-mentioned boundary problem of local
smoothing jump detector, there is no clear way to measure the performance of ŝ1. Maybe this is why
we do not have well established bandwidth selection method for jump detector yet. In Section 3, we
verify the appropriateness of PMSE as a measure of performance of ŝ1 numerically. The theoretical
investigation needs further study.

2.2. Bootstrap bandwidth selection method

Since PMSE of (2.4) includes the unknown parameter s1, we should figure out how to estimate PMSE
in order to construct the bandwidth selection method based on PMSE. Now the idea is to use a boot-
strap procedure to estimate PMSE and to select the bandwidth for which this estimated PMSE is
minimal.

Bootstrap algorithm

Step 1 From the observed sample χ = {(x1,Y1), . . . , (xn,Yn)} we randomly draw a pair (xi,Yi) with
replacement to form χ∗ = {(x∗1,Y

∗
1 ), . . . , (x∗n,Y

∗
n )}.

Step 2 With a range of value of h, we compute ŝ∗1 for the resample χ∗.

Step 3 With B bootstrap replications of step 1 and 2, we have B values of ŝ∗1, denoted by ŝ(b)
1 , b =

1, . . . , B for each value of h.

Step 4 We compute the bootstrap estimate of PMSE by

PMSE(ŝ1) = log


1

B − 1

B∑

b=1

(
ŝ(b)

1 − ŝ(∗)
1

)2
+

(
ŝ(∗)

1 − ŝ1

)2
 +

λ

log(n)(1 − 2h)
,

where ŝ(∗)
1 = 1/B

∑B
b=1 ŝ(b)

1 and ŝ1 is the estimated jump location computed from the original
observed sample.

Step 5 We select the value of h for which the bootstrap estimate of PMSE(ŝ1) is minimal.

With the model (2.3), we compute the bootstrap estimate PMSE(ŝ1) based on 2000 independent
samples for n = 50 with λ = 10 case. In each sample, we set B = 200. The results are displayed in
Figure 3. Note that PMSE(ŝ1) is well estimated by the bootstrap procedure.
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Figure 3: Monte Carlo bootstrap estimate of PMSE(ŝ1) for model (2.3).

Table 1: Simulation results

Interval σ = 0.15 σ = 0.2
m1 m2 m3 m4 m1 m2 m3 m4

[0.00, 0.15) 0 1 0 0 0 2 2 1
[0.15, 0.25) 0 1 0 0 6 5 3 0
[0.25, 0.35) 0 2 0 967 16 14 10 863
[0.35, 0.45) 3 7 9 17 26 24 26 64
[0.45, 0.55) 986 976 981 13 895 898 909 55
[0.55, 0.65) 3 10 6 2 39 37 37 8
[0.65, 0.75) 5 3 4 0 16 15 10 6
[0.75, 0.85) 3 0 0 1 2 5 3 3
[0.85, 1.00] 0 0 0 0 0 0 0 0
mean of ŝ1 0.510 0.509 0.509 0.311 0.507 0.507 0.508 0.329

sd of ŝ1 0.020 0.023 0.016 0.032 0.048 0.052 0.045 0.067

3. Numerical Study

In this section, we evaluate the bootstrap bandwidth selection method through a simulation study and
provide an example with real data.

3.1. Simulation study

We considered the following discontinuous regression models:

m1(x) = 2 + 0.5I(x ≥ 0.5),
m2(x) = x + 0.5I(x ≥ 0.5),

m3(x) = x2 + 0.5I(x ≥ 0.5),
m4(x) = sin(2πx) + 1I(x ≥ 0.3).

The design points were given by xi = (i − 1)/(n − 1) for i = 1, . . . , n. The sample size considered
was n = 50. The error terms were generated from N(0, σ2) where σ = 0.15, 0.2. The typical data sets
of each regression model for σ = 0.2 along with the true regression lines are presented in Figure 4.
As a jump detection procedure, we used the jump detector of (2.2). In all studies we considered 1000
simulations and the number of bootstrap replicates was B = 200.

The simulation results are summarized in Table 1. The number of times that the estimated values
of ŝ1 fall in the specific intervals out of 1000 simulation samples are presented. In the two bottom lines
of the table we also list the means and standard deviations of ŝ1 across the 1000 simulation samples.
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Figure 4: The true regression lines with a typical simulated data set.
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Figure 5: The kernel density estimate of the bandwidth selected by the bootstrap algorithm based on 1000
simulations for m3 and σ = 0.2.

Even though we consider rather small sample size, n = 50 case only, the performance of the proposed
fully data-adaptive bandwidth selection method is quite excellent.

For the case of m3 andσ = 0.2, we display a graph of a kernel density estimate of 1000 bandwidths
selected by the proposed bootstrap algorithm in Figure 5. This graph shows that the density function
of bootstrap selected bandwidth is concentrated around 0.2.

3.2. Example with real data

It is well known that the December sea level pressure during 1921–1992 in Bombay, India has a
discontinuity point around 1960 and 1961. The small dots in the left panel of Figure 6 represent the
sea level pressure. These data are given in Qiu (2005).

The right panel of Figure 6 is the bootstrap estimate of PMSE, so the bootstrap procedure tells
us that the optimal bandwidth is h = 13. The jump detector of (2.2) with h = 13 indicates that the
abrupt change occurs around 1961, and the final estimate of regression curve is represented by the
solid curves in the left panel of Figure 6. It seems that the proposed bandwidth selection method
works quite well in this example.
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Figure 6: The December sea level pressure during 1921 to 1992 in Bombay, India. Left: The small dots represent
sea level pressure and the solid curves represent nonparametric estimate. Right: The bootstrap estimate of PMSE

for various h.

4. Conclusion

When we want to estimate jump discontinuity locations of the unknown regression function, local
smoothing jump detection procedure is very popular. It is quite clear that the performance of any
kernel-based or polynomial-based jump detector heavily depends on the choice of the bandwidth.
Thus the bandwidth selection method for local smoothing jump detector is the important issue, but
little attention has been paid so far.

In this paper, we proposed the bootstrap bandwidth selection method for local smoothing jump
detector. Through the simulation and real data example we investigated the performance of the fully
data-adaptive bandwidth selection method, and it seems that the proposed method performs very well.

We defined the PMSE as the measure of performance for local smoothing jump detector and in-
vestigated the empirical properties only. Theoretical investigation about the appropriateness of PMSE
should be done, and it needs further study.
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