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Abstract
Local linear jump detection in a discontinuous regression function involves the choice of the bandwidth and

the performance of a local linear jump detector depends heavily on the choice of the bandwidth. However, little
attention has been paid to this important issue. In this paper we propose two fully data adaptive bandwidth
selection methods for a local linear jump detector. The performance of the proposed methods are investigated
through a simulation study.
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1. Introduction

Suppose we want to estimate a discontinuous regression function m nonparametrically using a sample
of n data {(xi,Yi), i = 1, . . . , n} generated from

Yi = m(xi) + ϵi, i = 1, . . . , n, (1.1)

where ϵi’s are independent and identically distributed with mean 0 and finite variance σ2. In this
paper, we deal with a fixed design case only and assume that xi’s are evenly spaced from 0 to 1. We
also assume that the discontinuous regression function m is expressed by

m(x) = f (x) +
p∑

j=1

d jI(x > s j), (1.2)

where f is a continuous function in the entire design interval, p is the number of jump points, S =
{s j, j = 1, . . . , p} are the jump positions, and {d j, j = 1, . . . , p} are jump magnitudes.

There are two approaches to the nonparametric estimation of the discontinuous regression func-
tion. The first approach (usually called the direct approach or jump-preserving smoothing) estimates
the regression function directly without detecting the jumps explicitly. The second approach (usually
called the indirect approach) first estimates the locations of jump points using one of the various jump
detection procedures and then estimates each smooth parts of the regression function by separately
applying a traditional smoothing technique. Refer to Gijbels et al. (2007), and Park (2009a), for
the literature on direct and indirect estimation methods.

In this paper we focus on the second approach (indirect approach). The major issue of the second
approach is to obtain good estimates of jump locations. Many jump detectors are based on a kernel
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or local polynomial method and the performance of the jump detector heavily depends on the choice
of the bandwidth. The bandwidth selection for the jump detector is an important issue for the second
approach; however, only limited research has been done. Gijbels and Goderniaux (2004), has dis-
cussed the bootstrap bandwidth selection for the jump detection procedure of Gijbels et al. (1999),
but their method is rather complicated. Zhang et al. (2009), proposed the bootstrap bandwidth selec-
tion for the jump detector which is based on local polynomial kernel smoothing. They modified the
procedure of Gijbels and Goderniaux (2004), in several aspects, so they argued that the performance
of their method should be superior to the method of Gijbels and Goderniaux (2004). Park (2009b),
also proposed the bootstrap bandwidth selection for the case of p = 1 by minimizing penalized mean
squared error.

In this paper, we propose the bootstrap bandwidth selection methods for the case when p is known
and p ≥ 1. We also compare the performance of the proposed methods with existing methods through
a simulation study.

2. Bandwidth Selection

2.1. Local linear jump detector

The common procedure of the local smoothing jump detector is to fit a smooth curve nonparametri-
cally to the left and to the right of a given point, and the difference between these two fits contains the
basic information about the jump discontinuity. There are various local smoothing jump detectors, but
in this paper we consider the local linear jump detector proposed by Park (2009a). To state the jump
detection procedure, the following notations will be used. Set

w(l)
j1 j2
=

n∑
i=1

(xi − x) j1 K j2
l

(
xi − x

g

)
, for j1 = 0, 1, 2 and j2, l = 1, 2.

g is a smoothing parameter and K1 and K2 are kernel functions. Here the support of K1 and K2 are
[0, 1] and [−1, 0], respectively.

For x ∈ [δ, 1−δ] where δ is an arbitrarily small positive constant, the jump detector T (x) is defined
by standardizing the difference as follows.

T (x) =
m̂+(x) − m̂−(x)

√
Var (m̂+(x) − m̂−(x))

(2.1)

where

m̂+(x) =
n∑

i=1

w(1)
21 − w(1)

11 (xi − x)

w(1)
01 w(1)

21 −
(
w(1)

11

)2 YiK1

(
xi − x

g

)
,

m̂−(x) =
n∑

i=1

w(2)
21 − w(2)

11 (xi − x)

w(2)
01 w(2)

21 −
(
w(2)

11

)2 YiK2

(
xi − x

g

)
,

and

Var (m̂+(x) − m̂−(x)) = V1 + V2
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where

Vi =

σ2
[(

w(i)
21

)2
w(i)

02 − 2w(i)
21w(i)

11w(i)
12 +

(
w(i)

11

)2
w(i)

22

]
(
w(i)

01w(i)
21 −

(
w(i)

11

)2
)2 , i = 1, 2.

When the number of jumps p is known, jump locations can be estimated as follows. Let s̃ j be the
maximizer of |T (x)| over the set A j where

A j = [δ, 1 − δ] −
j−1∪
k=1

[
s̃k − g, s̃k + g

]
, (2.2)

for j = 1, . . . , p. The order statistics of {s̃ j, j = 1, . . . , p} are denoted as s̃(1) < s̃(2) < · · · < s̃(p).
Then the estimated jump locations are given by Ŝ = {ŝ j = s̃( j), j = 1, . . . , p}, and the estimated jump
magnitudes are also given by d̂ j = T (ŝ j), j = 1, . . . , p.

2.2. Existing bandwidth selection procedures

The excellent choice of the bandwidth is indispensable in the good performance of the local smoothing
jump detector, but only a little work has been done. Zhang et al. (2009) proposed the bootstrap
bandwidth selection procedure and argued that their method is an improved version of the procedure
of Gijbels and Goderniaux (2004). Henceforth, we denote their method as the ZSQ method, and the
bandwidth value attained by their method as gZS Q. The algorithm for getting gZS Q is as follows:

Algorithm of ZSQ method

Step 1 Define new observations

Ỹi = Yi −
p∑

j=1

d̂ jI
(
xi > ŝ j

)
, i = 1, 2, . . . , n.

Denote f̂ as local smoothing estimator of f in (1.2) using bandwidth h from data {(xi, Ỹi), i =
1, . . . , n}. Then, define residuals

ϵ̂i = Yi − f̂ (xi) −
p∑

j=1

d̂ jI
(
xi > ŝ j

)
, i = 1, . . . , n.

Step 2 Obtain B batches of resampled residuals {ϵ̂∗i , i = 1, . . . , n} from {ϵ̂i, i = 1, . . . , n} by random
selection with replacement. For the bth batch of resampled residuals, define pseudo data as
follows.

Ŷ∗i = f̂ (xi) +
p∑

j=1

d̂ jI
(
xi > ŝ j

)
+ ϵ̂∗i , i = 1, . . . , n.

Step 3 Apply the local polynomial jump detection procedure with bandwidth g to the bth pseudo data,
and the set of detected jump is denoted as Ŝ b. Then the Hausdorff distance dH(S , Ŝ ; g, h) is
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estimated by

d̂H

(
S , Ŝ ; g, h

)
=

1
B

B∑
b=1

dH

(
Ŝ , Ŝ b; g, h

)
where dH(Ŝ , Ŝ b; g, h) is the Hausdorff distance between Ŝ and Ŝ b, which is defined by

dH

(
Ŝ , Ŝ b; g, h

)
= max

sup
s1∈Ŝ

inf
s2∈Ŝ b

|s1 − s2|, sup
s1∈Ŝ b

inf
s2∈Ŝ
|s1 − s2|

 .
Step 4 The bandwidth gZS Q is attained by

min
g>0

[
min
h>0

d̂H

(
S , Ŝ ; g, h

)]
.

Park (2009b), also proposed the bandwidth selection method for the case of p = 1. Since it is
common to measure the closeness of the estimator ŝ1 to its target parameter s1 by MSE(ŝ1), he tried
to obtain the optimal bandwidth by minimizing Monte Carlo MSE(ŝ1). In his paper, the jump point is
assumed to be located inside of [g, 1 − g] and this is a kind of a universal assumption about the range
of the discontinuity points. However, because of this assumption, it is always true that g ≤ ŝ1 ≤ 1− g,
so the large value of g reduces the range of ŝ1 and it has a direct effect on the large reduction of the
Monte Carlo Var(ŝ1) and this also entails a large reduction of the Monte Carlo MSE(ŝ1) as long as
s1 ∈ [g, 1 − g]. Therefore, the Monte Carlo MSE(ŝ1) turns out to be the decreasing function of g and
it is not possible to obtain the optimal bandwidth by minimizing Monte Carlo MSE(ŝ1). As one way
to resolve this problem, he defined the penalized mean squared error(PMSE) in order to penalize the
large value of g for computing MSE(ŝ1) and proposed the bootstrap bandwidth selection method by
minimizing the Monte Carlo PMSE(ŝ1).

Another way to resolve this problem is to assume that the jump points are located inside of [δ, 1−δ]
where δ is an arbitrarily small positive constant. Wu and Chu (1993), also used the same assumption.
Since δ has nothing to do with g, there is no guarantee that large value of g induces large reduction
of Monte Carlo Var(ŝ1). The only problem for this assumption is that the jump detector with the
bandwidth g may suffer from the boundary effect at the point near each end of design interval when
g > δ. The jump detector considered in this paper, however, is based on the local linear regression, so
we do not have to worry about the boundary effect problem. Under this assumption, we propose two
new bandwidth selection methods in Section 2.3.

2.3. Bootstrap bandwidth selection method

For the jump detection procedure of (2.2), we consider two criteria for assessing the closeness of Ŝ
to S . One is the sum of MSE,

∑p
j=1 MSE(ŝ j) and the other is the Hausdorff distance between S and

Ŝ , dH(S , Ŝ ). It is common to measure the closeness of an estimator to its target parameter by MSE,
so the sum of MSE is the natural extension for the multi-parameter case. The Hausdorff distance is
a similarity measure between two arbitrary point sets, and is used in many fields. For example, it is
used to assess the accuracy of alignment between two images.

Using these criteria we propose two bandwidth selection methods. Since the two criteria include
the unknown parameter S , we need to use a bootstrap procedure to estimate both the sum of MSE and
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the Hausdorff distance. We denote the method based on the sum of MSE as P-MSE, and the method
based on the Hausdorff distance as P-HD. Algorithms of P-MSE and P-HD are as follows.

Bootstrap Algorithm

Step 1: Common Step for the two procedures

Obtain B batches of resampled data χ∗ = {(x∗1,Y
∗
1 ), . . . , (x∗n,Y

∗
n )} from the observed sample

χ = {(x1,Y1), . . . , (xn,Yn)} by random selection of a pair (xi,Yi) with replacement. Apply the
jump detection procedure (2.2) to bth batch of resampled data with the bandwidth g, and the
set of detected jump points is denoted as Ŝ b = {ŝ(b)

j , j = 1, . . . , p}.

Step 2-1: P-MSE method

The bandwidth gMS E is attained by

min
g>0

p∑
j=1

 1
B − 1

B∑
b=1

(
ŝ(b)

j − ŝ(∗)
j

)2
+

(
ŝ(∗)

j − ŝ j

)2


where ŝ(∗)
j =

∑B
b=1 ŝ(b)

j /B for j = 1, . . . , p.

Step 2-2: P-HD method

The bandwidth gHD is attained by

min
g>0

 1
B

B∑
b=1

dH

(
Ŝ , Ŝ b; g

) .
In the above algorithm, Step 1 is about constructing B batches of Ŝ b, and this is a common step

for two bandwidth selection procedures. Step 2-1 describes the first bandwidth selection method. In
this method, we select the value of g at which the bootstrap estimate of

∑p
j=1 MSE(ŝ j) is minimal, and

we denote this value as gMS E . Step 2-2 describes the second bandwidth selection method. We select
value of g at which the bootstrap estimate of dH(S , Ŝ ) is minimal, and we denote this value as gHD.

3. Simulation Study

A simulation study was conducted to evaluate the finite sample properties of the bootstrap bandwidth
selection methods proposed in Section 2.3. We also considered the bandwidth selection method of
Zhang et al. (2009) to compare the performance with the proposed methods. We considered the
following discontinuous regression models:

m1(x) =


2/3 − 2x, x ≤ 0.3,
1, 0.3 < x ≤ 0.7,
−2(x − 2/3)(x − 2), x > 0.7,

m2(x) = sin(4πx)I(x ≤ 0.3) − sin(4πx)I(0.3 < x ≤ 0.7) + sin(4πx)I(x > 0.7),

m3(x) = x2 + .5I(x > s j), j = 1, 2,
m4(x) = sin(2πx) + I(x > s j), j = 1, 2,



584 Dongryeon Park

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

X

Y

m1(x)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
0.

0
0.

5
1.

0

X

Y

m2(x)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

X

Y

m3(x)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

X

Y

m4(x)

Figure 1: The true discontinuous regression functions and the typical data set of each model
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Figure 2: Histogram of ŝ1 and ŝ2 for m1

where s1 = 0.5 and s2 = 0.7. The design points, xi’s were evenly spaced from 0 to 1 with a sample
size of n = 50, and Yi’s were generated from model (1.1) with ϵi ∼ N(0, σ2) where σ = 0.1, 0.2.
When σ = 0.2, the four true discontinuous regression functions and the typical data set of each model
are shown in Figure 1.

In all studies we considered 1000 simulation samples and the number of bootstrap replicates was
B = 100. For the kernel function of T (x) in (2.1), we chose K1(x) = 1.5(1 − x2)I[0,1](x) and K2(x) =
K1(−x) for all x. For each sample, the values of gMS E , gHD, and gZS Q were selected, and the locations
of the jump positions were estimated by the jump detection procedure of (2.2) with δ = 0.1. The
selection of the bandwidth value for gZS Q was done by the function bds of the package polydect
in R. The usage of the function bds is as follows: bds(g,B,h,X,Y,x,order) where g is the bandwidth
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Figure 3: Histogram of ŝ1 and ŝ2 for m2

P−MSE

P−HD

ZSQ

σ = 0.1

0
20

0
60

0
10

00

0 0.1 0.3 0.5 0.7 0.9 1

0
20

0
60

0
10

00

0 0.1 0.3 0.5 0.7 0.9 1

0
20

0
60

0
10

00

0 0.1 0.3 0.5 0.7 0.9 1

σ = 0.2

0
20

0
60

0
10

00

0 0.1 0.3 0.5 0.7 0.9 1

0
20

0
60

0
10

00

0 0.1 0.3 0.5 0.7 0.9 1

0
20

0
60

0
10

00

0 0.1 0.3 0.5 0.7 0.9 1

m3 with s1 = 0.5

Figure 4: Histogram of ŝ1 for m3 with s1 = 0.5

value for detecting jump locations, B indicates the times of Bootstrap, h is the bandwidth value to
estimate the function f with jump removed, X is the design points, Y is the observed data points, x
is a vector that corresponds to the interval [δ, 1 − δ], and the order specifies the order of the local
polynomial estimator used. This function returns the value indicating the average of the Hausdorff
distance between the detected and true set of jump positions, while the detection is repeated by B
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Figure 5: Histogram of ŝ1 for m3 with s1 = 0.7
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Figure 6: Histogram of ŝ1 for m4 with s1 = 0.5

times.
The simulation results are summarized from Figure 2 to Figure 7. In these figures, the distribu-

tions of ŝ j out of 1000 simulation samples are presented by the histograms. The means and standard
deviations of ŝ j are also listed in Table 1. The distribution of the attained bandwidth values is also an
important result of the simulation. In Table 2, the means and standard deviations of the bandwidths
are listed.
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Figure 7: Histogram of ŝ1 for m4 with s1 = 0.7
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Figure 8: Histogram of ŝ1 for m3 with s1 = 0.3 and for m4 with s1 = 0.6

The function m1 and m2 are the two jump points models. As we can see in Figure 2, the distribu-
tions of ŝ j of three bandwidth selection methods appear almost identical. In Table 1, we can see that
the mean values of ŝ j of three bandwidth selection methods for m1 are the same, but the ZSQ method
has lager standard deviation. Note that the distributions of the bandwidths are almost identical for m1
in Table 2.

In m2, we find out the problem of the ZSQ method. In Figure 3, the histograms of ŝ j for the ZSQ
method with the jump detection procedure of (2.2) are placed in the third row. Note that the jump
detection procedure of (2.2) is based on the local linear regression, and its order is annotated in the
figure. From these histograms, we can notice that the ZSQ method with the local linear jump detector
does not work at all. It is unclear why the ZSQ method with the local linear jump detector produced
the unexpected inferior results in m2, but we can guess that the large curvature of m2 may cause the
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Table 1: Means and standard deviations of ŝ j in 1000 simulation samples. In both m2 and m4, the results of the
ZSQ method are for the case of order = 2 in the function bds.

s j
m1 m1 m2 m2 m3 m3 m4 m4
0.3 0.7 0.3 0.7 0.5 0.7 0.5 0.7

mean P-MSE .306 .714 .370 .705 .509 .714 .510 .713

(ŝ j)
P-HD .306 .714 .398 .702 .509 .714 .509 .714

σ = .1 ZSQ .306 .714 .297 .624 .510 .713 .477 .571

sd P-MSE 0 0 .003 .090 .025 .003 .001 .015

( ŝ j)
P-HD 0 0 .003 .102 .044 .003 .007 .007
ZSQ 0 0 .010 .126 .126 .021 .106 .117

mean P-MSE .306 .713 .396 .679 .508 .682 .500 .642

( ŝ j)
P-HD .306 .713 .403 .666 .509 .689 .500 .662

σ = .2 ZSQ .307 .712 .309 .678 .511 .684 .507 .681

sd P-MSE .003 .005 .098 .069 .049 .106 .060 .110

(ŝ j)
P-HD .003 .004 .109 .084 .054 .101 .064 .099
ZSQ .025 .021 .094 .118 .070 .117 .083 .093

Table 2: Means and standard deviations of attained bandwidths in 1000 simulation samples. In both m2 and m4,
the results of gZS Q are for the case of order = 2 in the function bds.

m1 m2 m3 m3 m4 m4
(s1 = .5) (s1 = .7) (s1 = .5) (s1 = .7)

gMS E .196 .127 .194 .191 .087 .104
mean gHD .195 .135 .193 .187 .084 .103

σ = .1 gZS Q .234 .201 .219 .215 .172 .180
gMS E .037 .047 .041 .040 .021 .024

sd gHD .039 .061 .041 .041 .019 .024
gZS Q .026 .065 .056 .057 .080 .082
gMS E .223 .155 .213 .207 .117 .151

mean gHD .221 .166 .213 .208 .113 .137

σ = .2 gZS Q .238 .108 .213 .213 .074 .073
gMS E .025 .039 .046 .051 .059 .063

sd gHD .027 .046 .047 .048 .059 .056
gZS Q .039 .088 .061 .060 .057 .058

poor performance. Thus, we include the ZSQ method with the local quadratic jump detector in the
simulation study for m2, and the results are displayed in the bottom row of Figure 3. For σ = 0.2 case,
the ZQS method with the quadratic detector shows significantly improved performance; however, it
still does not work for the σ = 0.1 case. This is also a very surprising result since in the case of
σ = 0.1 it is easier to detect the jump points than the case of σ = 0.2. In Table 1 and Table 2, only the
results for the ZSQ method with the local quadratic jump detector are displayed for m2.

The function m3 and m4 are the one jump point models. For m3, we can notice that the performance
of three bandwidth selection methods are almost identical. The distributions of both ŝ j and the attained
bandwidths look alike. In m4, we find exactly same problem of the ZSQ method as in m2. As we can
see in Figure 6 and Figure 7, the ZSQ method with the local linear jump detector does not work at all;
in addition, the ZSQ method with the local quadratic jump detector only shows significantly improved
results only for the case of σ = 0.2.

The bandwidth selection procedure proposed in Park (2009b), selects the bandwidth value by
minimizing the following penalized mean squared error

PMSE = log
[
E (ŝ1 − s1)2

]
+

10
log(n)(1 − 2g)

,

so it seems that this method is comparable with the P-MSE method for the single jump point model.
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Figure 9: The December sea-level pressure data and the penny thickness data. The solid curves represent non-
parametric regression estimates.

However, the method in Park (2009b), assumes that the jump point is located inside of [g, 1 − g],
which is not true in this paper. Even though the direct comparison between two methods may not have
much meaning, we may have a chance to understand which assumption is more appropriate through
the simulation study that compares the performance of the two methods. For m3 with s1 = 0.3 and m4
with s1 = 0.6, we conducted the simulation study. In both models, we considered only σ = 0.1 case.
The simulation results are summarized in Figure 8. For m3 with s1 = 0.3 case, two methods show
almost identical performance; however, P-MSE shows inferior results in m4 with s1 = 0.6. We do not
want to make any premature conclusion based on this simulation study due to the need for a thorough
investigation that compares the performance of the two methods.

4. Applications

In this section, we apply the jump detection procedure of (2.2) with the proposed bandwidth selection
methods to real data sets. The first data is the December sea-level pressure from 1921–1992 in Bom-
bay, which is shown in the left panel of Figure 9. It is well known that the sea-level pressure has a
discontinuity point around 1960 and 1961. This data set is given in Qiu (2005). The bandwidth value
chosen by P-MSE, P-HD, and ZSQ is g = 18. All of them choose the same bandwidth value, and the
jump detection procedure (2.2) with g = 18 produces ŝ1 = 1961. After we estimate the jump position,
we divide whole interval into two parts and then estimate the discontinuous regression function by ap-
plying a local linear regression model to each smooth part separately. The fitted curves are presented
in Figure 9.

The second data set is the penny thickness data, which is available from Scott (1992), and shown
in the right panel of Figure 9. This data consists of thickness in mils of a sample of 90 U.S. Lincoln
pennies minted from 1945 to 1989. Since two pennies were measured for each year, we replace
the original data by the mean of each pair per year. It is known that penny thickness measure has
two jumps around 1959 and 1975. For this data set, three bandwidth selection methods also yield the
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same bandwidth value, g = 8. With this bandwidth value, the jump detection procedure (2.2) produces
ŝ1 = 1959 and ŝ2 = 1975. Gijbels and Goderniaux (2004), treated this data set and selected g = 5
by their bootstrap bandwidth selection method. The bandwidth value of g = 5 gives the same jump
points estimates. The discontinuous nonparametric regression function is estimated and displayed in
Figure 9.

5. Conclusion

When we apply the local linear jump detection procedure for the estimation of the locations of the
jump points of the unknown regression function, we have to select the bandwidth value for the jump
detector; it is clear that the performance of the jump detector depends heavily on the choice of the
bandwidth. However, limited attention has been paid to this important issue of the choice of the
bandwidth. In this paper, we proposed two fully data adaptive bandwidth selection methods for local
linear jump detector. Through the simulation study we investigated the performance of the proposed
methods. The performance of two proposed methods are almost identical, and it seems to be verified
that the proposed methods are competitive methods to select the bandwidth in practice.

To use the ZSQ method, there are actually two bandwidths involved, one is for detection and the
other is to estimate the continuous part. Thus we need to try different combinations of the two and
find a best combination. However, the proposed methods need only one bandwidth for detection that
provides much convenience in practice. Moreover, it seems that the ZSQ method is very sensitive to
the amount of curvature of the regression function, whereas proposed methods show consistent results
for all cases we have considered in the simulation. This is a desirable property of the bandwidth
selector since we usually have no idea about the amount of curvature of the unknown regression
function in practice.
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