• 제목/요약/키워드: joint tracking system

검색결과 198건 처리시간 0.025초

Sugeno 형태의 퍼지 논리를 이용한 도립 진자의 적응 퍼지 제어 (Adaptive Fuzzy Control of Inverted Pendulum Using the Sugeno-Type of Fuzzy Logic)

  • 박해민;원성운;김영태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.193-196
    • /
    • 2002
  • This paper proposes the control problem of an inverted pendulum system based on Sugeno-Type of fuzzy logic. The universal approximating capability, learning ability, adaptation capability and disturbance rejection are collected in one control strategy. The proposed scheme does not require an accurate dynamic model and the joint acceleration measurement, yet it guarantees asymptotic trajectory tracking. Experimental results perform with an inverted pendulum to show the effectiveness of the approach.

  • PDF

PSD 센서 및 Back Propagation 알고리즘을 이용한 AM1 로봇의 견질 제어 (Robust Control of AM1 Robot Using PSD Sensor and Back Propagation Algorithm)

  • 정동연;한성현
    • 한국산업융합학회 논문집
    • /
    • 제7권2호
    • /
    • pp.167-172
    • /
    • 2004
  • Neural networks are used in the framework of sensor based tracking control of robot manipulators. They learn by practice movements the relationship between PSD(an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple back propagation networks one of which is selected according to which division (Corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

RBF 신경회로망을 이용한 Mobile Inverted Pendulum의 위치제어 (Position control of a Mobile Inverted Pendulum using RBF network)

  • 노진석;이근형;정슬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.179-181
    • /
    • 2007
  • This paper presents the desired position control of the mobile inverted pendulum system(MIP). The MIP is required to track the circular trajectory in the xy plane through the kinematic Jacobian relationship between the xy plane and the joint space. The reference compensation technique of the radial basis function(RBF) network is used as a neural network control method. The back-propagation teaming algorithm of the RBF network is derived and embedded on a DSP board. Experimental studies of tracking the circular trajectory are conducted.

  • PDF

TMS320C31 칩을 사용한 스카라 로봇의 실시간 적응제어데 관한 연구 (A Study on the Real Time Adaptive Controller for SCARA Robot Using TMS320C31 Chip)

  • 김용태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.79-84
    • /
    • 1996
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C31) for robotic manipulators to achieve trajectory tracking by the joint angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller, feedback controller, and PID type time-varying auxillary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

디지털 신호처리기를 사용한 산업용 로버트의 실시간 적응제어기 설계 (Design of a Real Time Adaptive Controller for Industrial Robot Using Digital Signal Processor)

    • 한국생산제조학회지
    • /
    • 제5권4호
    • /
    • pp.26-37
    • /
    • 1996
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C30) for robotic manipulators to achieve trajectory tracking by the joint angles Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller. feedback controller. and PID type time-varying auxiliary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require a an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

카메라 기반 6DoF 추적 및 포즈 추정 시스템의 설계 및 구현에 관한 연구 (A Study on the Design and Implementation of a Camera-Based 6DoF Tracking and Pose Estimation System)

  • 정도윤;정희자;김남호
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권5호
    • /
    • pp.53-59
    • /
    • 2024
  • 본 연구에서는 카메라 기반의 6DoF(6 Degrees of Freedom) 추적 및 포즈 추정 시스템을 설계하고 구현하였다. 특히, 6DoF 로봇 팔을 활용하여 사용자의 모든 손가락에 대한 위치와 자세를 정밀하게 추정하는 방법을 제안한다. 시스템은 Python 프로그래밍 언어를 기반으로 하여, Mediapipe와 OpenCV 라이브러리를 활용하여 개발되었다. Mediapipe는 손가락의 키포인트를 실시간으로 추출하는 데 사용되며, 각 손가락의 관절 위치를 정확하게 인식한다. OpenCV는 카메라에서 수집된 이미지 데이터를 처리하여 손가락의 위치를 분석하고, 이를 통해 포즈 추정을 수행한다. 이러한 접근법은 다양한 조명 조건과 손의 위치 변화에도 불구하고 높은 정확도를 유지할 수 있도록 설계되었다. 제안한 시스템은 실험을 통해 그 성능을 검증하였으며, 손동작 인식의 정확성과 로봇 팔의 제어 능력을 평가하였다. 실험 결과, 본 시스템은 실시간으로 손가락의 위치를 추정하고, 이를 기반으로 6DoF 로봇 팔의 정밀한 동작을 구현할 수 있음을 보여주었다. 본 연구는 로봇 제어 및 인간-로봇 상호작용 분야에 중요한 기여를 할 것으로 기대되며, 향후 다양한 응용가능성을 열어줄 것이다. 본 연구의 결과는 로봇 기술의 발전과 더불어 사람과 로봇 간의 자연스러운 상호작용을 촉진하는 데 기여할 것이다.

단신 : 페달링 시 정량적인 동적 피팅을 위한 실시간 평가 시스템 (Technical-note : Real-time Evaluation System for Quantitative Dynamic Fitting during Pedaling)

  • 이주학;강동원;배재혁;신윤호;최진승;탁계래
    • 한국운동역학회지
    • /
    • 제24권2호
    • /
    • pp.181-187
    • /
    • 2014
  • In this study, a real-time evaluation system for quantitative dynamic fitting during pedaling was developed. The system is consisted of LED markers, a digital camera connected to a computer and a marker detecting program. LED markers are attached to hip, knee, ankle joint and fifth metatarsal in the sagittal plane. Playstation3 eye which is selected as a main digital camera in this paper has many merits for using motion capture, such as high FPS (Frame per second) about 180FPS, $320{\times}240$ resolution, and low-cost with easy to use. The maker detecting program was made by using Labview2010 with Vision builder. The program was made up of three parts, image acquisition & processing, marker detection & joint angle calculation, and output section. The digital camera's image was acquired in 95FPS, and the program was set-up to measure the lower-joint angle in real-time, providing the user as a graph, and allowing to save it as a test file. The system was verified by pedalling at three saddle heights (knee angle: 25, 35, $45^{\circ}$) and three cadences (30, 60, 90 rpm) at each saddle heights by using Holmes method, a method of measuring lower limbs angle, to determine the saddle height. The result has shown low average error and strong correlation of the system, respectively, $1.18{\pm}0.44^{\circ}$, $0.99{\pm}0.01^{\circ}$. There was little error due to the changes in the saddle height but absolute error occurred by cadence. Considering the average error is approximately $1^{\circ}$, it is a suitable system for quantitative dynamic fitting evaluation. It is necessary to decrease error by using two digital camera with frontal and sagittal plane in future study.

A Study on Real Time Working Path Control of Vertical Type Robot System for the Forging and Casting Process Automation

  • Lim, O-Deuk;Kim, Min-Seong;Jung, Yang-Geun;Kang, Jung-Suk;Won, Jong-Bum;Han, Sung-Hyun
    • 한국산업융합학회 논문집
    • /
    • 제20권3호
    • /
    • pp.245-256
    • /
    • 2017
  • In this study, we describe a new approach to real-time implementation of working path control for the forging and casting manufacturing process by vertical type articulated robot system. The proposed control scheme is simple in structure, fast in computation, and useful for real-time control of factory automation based on robot system. Moreover, this scheme does not require any accurate parameter information, nor values of the uncertain parameters and payload variations. Reliability of the proposed controller is proved by simulation and experimental results for robot manipulator consisting of arm with six degrees of freedom under the variation of payloads and tracking trajectories in Cartesian space and joint space. The vertical type articulated robot manipulator with six axes made in SMEC Co., Ltd. has been used for real-time implementation test to illustrate the enhanced working path control performance for unmanned automation of the forging and casting manufacturing process.

Strawberry Harvesting Robot for Bench-type Cultivation

  • Han, Kil-Su;Kim, Si-Chan;Lee, Young-Bum;Kim, Sang-Chul;Im, Dong-Hyuk;Choi, Hong-Ki;Hwang, Heon
    • Journal of Biosystems Engineering
    • /
    • 제37권1호
    • /
    • pp.65-74
    • /
    • 2012
  • Purpose: An autonomous robot was developed for harvesting strawberries cultivated in bench-type systems. Methods: The harvest robot consisted of four main components: an autonomous vehicle, a manipulator with four degrees of freedom (DOF), an end effector with two DOFs, and a color computer vision system. Strawberry detection was performed based on 3D image and distance information obtained from a stereo CCD color camera and a laser device, respectively. Results: In this work, a Cartesian type manipulator system was designed, including an intermediate revolute axis and a double driven arm-based joint axis, so that it could generate collision-free motions during harvesting. A DC servomotor-driven end-effector, consisting of a gripper and a cutter, was designed for gripping and cutting the strawberry stem without damaging the strawberry itself. Real-time position tracking algorithms were developed to detect, recognize, trace, and approach strawberries under natural light conditions. Conclusion: The developed robot system could harvest a strawberry within 7 seconds without damage.

국내 설계시공일괄입찰방식 개선방안 (Improvement of the Design-Build Bidding in the Domestic Construction Industry)

  • 김수현;전민정;구교진;현창택
    • 한국건설관리학회:학술대회논문집
    • /
    • 한국건설관리학회 2003년도 학술대회지
    • /
    • pp.410-413
    • /
    • 2003
  • 건설시장에서 경쟁력을 강화하고 국제정책에 대응하기 위하여 설계업체와 시공업체의 협력을 장려하는 설계시공 일관입찰방식이 대두되었다. 설계시공일괄입찰방식은 공기단축, 사업비 절약, 품질 향상을 위한 전도 유망한 입찰방식이지만 국내 건설산업에서는 제도의 미비, 관계자들의 경험 및 인식부족 등으로 이러한 장점을 살리지 못하고 있다. 이에 따라 본 연구에서는 국내 공공공사 설계시공일괄입찰방식에서의 문제점을 사업비, 품질, 사업기간의 측면에서 분석하여 개선방안을 제안하고자 한다.

  • PDF