• Title/Summary/Keyword: joint stability

Search Result 886, Processing Time 0.024 seconds

The Evaluation of Structural Stability of Corrugated Steel Plate Method applied in High-Speed Railway Vertical Tunnel Structures (고속철도 수직구 터널구조물에 적용된 파형강판공법의 구조적 안정성 검토)

  • Chung, Jee-Seung;Shin, Hwa-Cheol;Kim, Jin-Gu
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.64-69
    • /
    • 2016
  • In this paper, structural analysis of High-Speed railway vertical tunnel structures was performed to verify the structural stability. The corrugated steel plate method was applied to the vertical tunnel structures for its simple construction method and low cost. The structural stability of Wall, Connection and Storage section was performed with LRFD and ASD design method at joint part, buckling, stress and plastic hinge. From the results, all of vertical tunnel structures shown the structural stability regardless of design method and structure types. So, the application of corrugated steel plate in vertical tunnel structures instead of cast-in-placed concrete was quite enough.

Design of initial support required for excavation of underground cavern and shaft from numerical analysis

  • Oh, Joung;Moon, Taehyun;Canbulat, Ismet;Moon, Joon-Shik
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.573-581
    • /
    • 2019
  • Excavation of underground cavern and shaft was proposed for the construction of a ventilation facility in an urban area. A shaft connects the street-level air plenum to an underground cavern, which extends down approximately 46 m below the street surface. At the project site, the rock mass was relatively strong and well-defined joint sets were present. A kinematic block stability analysis was first performed to estimate the required reinforcement system. Then a 3-D discontinuum numerical analysis was conducted to evaluate the capacity of the initial support and the overall stability of the required excavation, followed by a 3-D continuum numerical analysis to complement the calculated result. This paper illustrates the application of detailed numerical analyses to the design of the required initial support system for the stability of underground hard rock mining at a relatively shallow depth.

Rock Mass Stability of the Buddha Statue on a Rock Cliff using Fracture Characteristics and Geological Face-Mapping (마애불 암반의 단열특성과 지질맵핑을 이용한 안정성 해석)

  • Ihm, Myeong Hyeok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.539-544
    • /
    • 2023
  • The subject of this study is the Maae Buddha statue in granodiorite of the Mesozoic Cretaceous period, which is concerned about stability as a standing stone cultural property located in ◯◯-dong, Gyeongsangbuk-do. For stability analysis, three-dimensional face mapping, geological properties of joints, three-dimensional scanning, ultrasonic velocity, polarization microscopy, electron microscopy analysis and XRD analysis were performed. In addition, the safety factor of the Maaebul was calculated by analyzing the damage status investigation, stereographic projection analysis, rock classification, and limit equilibrium analysis. The types and scales of damage and possible collapse by section depend on the degree of weathering of the rock and the orientation and characteristics of the joints, but wedge-failure and toppling-failure are expected to be small-scale. The safety factor of Maaebul in dry and wet conditions is less than 1.2, so stability is concerned. The types of damage were mainly observed, such as exfoliation, cracking, granular decomposition, and vegetation growth. The Maaebul rock is granodiorite, and the surface discoloration materials are K, Fe, and Mg. The 4 sets of joints are developed, J1 is tensile joint and the others are shear joint. The uniaxial compressive strength estimated by ultrasonic exploration is 514kgf/cm2, which corresponds to most soft rocks and some weathered rocks. Rock classification(RMR) is estimated to be grade 5, very poor rock mass. These technique along with the existing methods of safety diagnosis of cultural properties are expected to be a reasonable tool for objective interpretation and stability review of stone cultural properties.

Evaluation of Effects of Real Joint-Operation of Multi-purpose Dams (다목적댐군의 실제 연계운영 효과 평가)

  • Kang, Min-Goo;Lee, Gwang-Man;Cha, Hyung-Sun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.2 s.175
    • /
    • pp.101-112
    • /
    • 2007
  • In this study, a methodology was developed to evaluate the effects produced in the event of joint-operation of dams from the viewpoint of water use. It was applied to evaluating the actual results of dam operation in the Han River basin. In order to evaluate the effects of real joint-operation in terms of water supply and flow conditions, the methodology used the satisfaction rate of water requirement and the stability of flow conditions at the evaluation site as indicator. In order to evaluate the effects of joint-operation in terms of power generation, the total power generation produced by dams was used as evaluation indicator. Actual operation results were evaluated by comparison of evaluation indicators relating to single dam operation by which the notified mont of water was supplied, as well as to optimization models. Results of actual joint-operation of the Han River basin, from 2001 to 2004, were compared yearly with results from single operation and optimization model; in terms of water supply, the satisfaction ratio of water requirement stood at $94.36{\sim}99.68%$ for single operation, $97.16{\sim}99.90%$ for actual joint-operation, and 100.0 % for optimization model for all four years. The stability of flow condition was evaluated by the coefficient of river regime and coefficient of flow conditions definitely, indicating that flow conditions were more stable in case of actual operation and optimization models than in case of single operation. The actual total power generation was compared with that generated by other operation rules, indicating that the optimization model increased the power generation by $-3.47{\sim}6.54%$ compared with the actual total power generation, and that the single operation decreased the power generation amount by $12.68{\sim}38.94%$ compared with the actual total power generation.

DEVELOPMENT OF NUMERICAL MODEL FOR THE VISCO-PLASTIC BEHAVIOUR OF THE JOINTED ROCK MASS REINFORCED BY ROCKBOLTS (록볼트로 보강한 절리암반의 점소성거동에 관한 수치해석 모델 개발)

  • Lee, Yeon-Gyu;Lee, Jeong-In;Jo, Tae-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.149-157
    • /
    • 1994
  • In this study two dimensional visco-plastic finite element model capable of handling the multi-step excavation was developed for investigating the effect of excavation support sequences on the behavior of underground openings in the jointed rock mass. First, the finite element model which is capable of handling the multi-step excavation is developed and verified. And then the model is combined with visco-plastic joint model. Ubiquitous joint pattern was considered in the model and joint properties in cach set were assumed to be indentical. Passive, full-grouted rockbolts were cosidered in the numerical model. The visco-plastic deformations of joints and rockbolts were assumed to be governed by Mohr-Conlomb and von Mises yield criteria, respectively. With the ability of removing elements, the model can simulate the multi-step excavation-suppport sequences. The reliability and applicability of the model to the stability analysis for the underground excavation in pratice was checked by simulating the behavior of underground crude oil storage caverns under construction.

  • PDF

Experimental Study of High Strength Concrete Beam-Column-Slab Connections subjected to cyclic loading (고강도 콘크리트 보-기둥-슬래브 접합부의 반복하중 실험)

  • 오영훈;오정근;장극관;김윤일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.339-344
    • /
    • 1995
  • In the design of ductile moment-resisting frames (DMRFs) following the strong column-weak beam dsign philosophy, it is desirable that the joint and column remain essentially elastic in order to insure proper energy dissipation and lateral stability of the structure. The joint has been identified as the "weak link" in DMRFs because any stiffness or strength deterioration in this region can lead to substantial drifts and the possibility of collapse due to P-delta effects. Moreover, the engineer is faced with the difficult task of detailing an element whose size is determined by the framing members, but which must resist a set of loads very different from those used in the design of the beams and columns. Four 2/3-scale beam-column-slab joint assemblies were designed according to existing code requirements of ACI 318-89, representing interior joints of DMRFs with reinforced high strength concrete. The influence on aseismic behavior of beam-column joints due to monolithic slab, has been investigated.estigated.

  • PDF

Modeling and Control of Cone-Shaped Active Magnetic Bearing System (원추형 능동 자기베어링계의 모형화 및 제어)

  • 정호섭;김철순;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3073-3082
    • /
    • 1993
  • A magnetically suspended robot joint is developed, which is free of dust and oil generation. Two radial bearings consisting of cone-shaped magnet cores control the rotor motion in the axial and radial directions. A linearized dynamic model is developed for active control of the magnetic bearing system. The control algorithm is constructed such that the axial displacement of the joint is controlled by radial control current to the pairs of facing radial bearings. The stability and control performance is tested through numerical simulation based on the nonlinear model. Experiments are also performed to verify the theoretical development.

Optimal Force Distribution for Quadruped Walking Robots with a Failed Leg (고장 난 다리가 있는 사족 보행 로봇을 위한 최적 힘 배분)

  • Yang, Jung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.614-620
    • /
    • 2009
  • The force distribution in multi-legged robots is a constrained, optimization problem. The solution to the problem is the set points of the leg contact forces for a particular system task. In this paper, an efficient and general formulation of the force distribution problem is developed using linear programming. The considered walking robot is a quadruped robot with a locked-joint failure, i.e., a joint of the failed leg is locked at a known place. For overcoming the drawback of marginal stability in fault-tolerant gaits, we define safety margin on friction constraints as the objective function to be maximized. Dynamic features of locked-joint failure are represented by equality and inequality constraints of linear programming. Unlike the former study, our result can be applied to various forms of walking such as crab and turning gaits. Simulation results show the validity of the proposed scheme.

New Robust Control Fesigns of Robot Manipulators (로봇 매니퓰레이터의 새로운 견실제어기 설계)

  • ;Ye-Hwa, Chen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.666-671
    • /
    • 1993
  • A new robust control law is proposed for uncertain rigid robots and two composite robust control laws for flexible-joint manipulators which contain uncertainties. The uncertainty, is nonlinear and (possibly fast) time-varying. Therefore, the uncertain factors such as imperfect modeling, function, payload change, and external disturbances are all addressed. Based only on the possible bound of the uncertainty, a robust controller is constructed for the rigid counterpart of the flexible-joint robot Some feedback control terms are then added to the robust control law to stabilize the elastic vibrations at the joints. To show that the proposed composite robust control laws are indeed applicable to flexible-joint robots, a singular perturbation approach and the stability study based on Lyapunov function are proposed.

  • PDF

EBG Metamaterial Ground Plane for Mitigation of Multipath Signals in GNSS Antenna

  • Boyko, Sergey N.;Kukharenko, Alexander S.;Yaskin, Yury S.
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.4
    • /
    • pp.199-205
    • /
    • 2015
  • An electromagnetic band gap (EBG) metamaterial construction is presented. A construction of a multipath mitigating ground plane, based on the EBG metamaterial is described. A method of the ground plane application and installation, which provides the multipath mitigating without spoiling antenna element phase center stability, is suggested and explained. A designed construction of GNSS antenna module, which contains the multipath mitigating ground plane, made from the presented EBG metamaterial and installed in the described way is shown and parameters of the antenna module are provided.