• Title/Summary/Keyword: joint slip

Search Result 121, Processing Time 0.031 seconds

An Experimental Study on the Fatigue Behavior of Torque Shear Type High Tension Bolted Joints (Torque Shear형 고장력 볼트 이음부의 피로거동에 관한 실험적 연구)

  • CHANG, Dong Il;Lee, Sung Uk
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.151-160
    • /
    • 1996
  • The fatigue test under the constant amplitude repeated loading is performed to investigate the fatigue behavior of the Torque Shear type high tension bolted joint which is able to manage the axial force uniformly. From the test results, it's known that the reduction of the axial force of T/S bolt followed by the elasped time is similar to that of the high tension bolts. The difference of relaxation is not occurred according to the position of bolts, the size of the introduced axial force but the effect of the variation of temperature is large. In the reduction of the axial force followed by the cumulation of the fatigue load, the outer bolt is larger than the inner bolt. This result depends on the difference in the distribution of the non-slip zone. The variation of the surface roughness affects the slip and the reduction of the anal force.

  • PDF

The Hallym Slider: A New Arthroscopic Simple Sliding and One-Way Locking Knot (한림 Slider: 쉽게 미끄러지며 단 방향으로 잠김이 되는 새로운 관절경적 매듭)

  • Noh Kyu-Cheol;Chung Yung-Khee
    • Clinics in Shoulder and Elbow
    • /
    • v.8 no.2
    • /
    • pp.117-121
    • /
    • 2005
  • A secure slip knot is very important in the arthroscopic surgery of the shoulder joint. The new 'Hallym Slider', developed by the first author(KCN), has the properties of being a simple sliding and one-way locking knot. This technique can be performed alone without an assistant and has no accidental premature locking during the knot tying. The initial slip knot determines the adequacy of tissue approximation and consequent healing. The 'Hallym Slider' has excellent initial holding capacity, maintaining tension on soft tissue while additional half-hitches are being tied. It locks readily, it takes less time to tie than numerous square knots, and it is not as bulky as other knots. Therefore, we introduce this new sliding and one-way locking knot during the arthroscpic surgery of shoulder.

Estimation of Yield strength and Slip Modulus for Helically Threaded Nail Connection (나선형 철선못 접합부의 항복내력 및 강성 예측)

  • Hwang, Kweonhwan;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.524-530
    • /
    • 2009
  • In the post-beam structure, the infilled light-frame construction provides most shear strengths. Shear properties of the light-frame structure can be estimated from the shear properties of nailed connection for the sheathings, and those of nailed connections can be done from nail bending strengths. For the basic study to predict the yield strength and the slip modulus of a nailed sheathing shear wall, those of a nailed joint were examined from nail bending strengths. To estimate shear properties of a nailed connection, referenced bearing strength and bearing constant for the wood members and the experimental nail bending strengths of the helically threaded nail were applied. The yield strength using the diameter at grooves instead of shank diameter was well coincided with the experimental value, but the slip modulus was estimated much smaller. The effective factors, specific gravity for the main member, withdrawal by nail head diameter to the side member, and embedment and moment at the nail head were considered, and further examinations are needed for the precise prediction of the nailed connections.

Estimation of Safety and Economical Efficiency of Large High Tension Bolted Joints (대직경 고장력볼트 이음부의 안전성 및 경제성 평가)

  • Sung, Ki-Tae;Kyung, Kab-Soo;Lee, Seung-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.97-105
    • /
    • 2009
  • This study was conducted for the purpose of examinating the safety and economical efficiency of large high tension bolted joints. The specimen using F10T-M30 large high strength bolts has been selected and static tensile test has been conducted to evaluate the slip characteristics. In addition, finite element analysis has been carried out to estimate the number of required bolts. As a result, the average slip coefficient of M30 high strength bolts exceeded 0.4 - the standard in highway bridge design specification - and has satisfied the slip strength, which is the same as that of M22 high strength bolts. In addition, if F13T-M22 high strength bolts were applied, the number of required bolts decreased by 21%, and if F10T-M30 high strength bolts were applied, the number of required bolts decreased by 46%, that leads to the conclusion that the economical efficiency in accordance with diametering of high strength bolts was now verified.

Charateristics of Adhesive Joint between Concrete and FRP Using Numerical Method (수치 모델을 사용한 콘크리트-FRP 부착면의 거동 특성)

  • 조정래;조근희;박영환;김병석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.219-222
    • /
    • 2003
  • Substantial experimental and theoretical work exists on the bond characteristics of FRP-concrete adhesive joints. Experimental studies show that the bond strength cannot always increase with an increase in the bond length, and that the ultimate strength is strongly influenced by the concrete strength. To solve this feature, analytic solutions based on fracture mechanics are widely used, and the local shear stress-slip curve with a softening branch is known as more rational model. The analytic solution, however, cannot describe various shapes of model curve. In this study, numerical method using interface element is introduced to express various shapes of model curve. Characteristics of adhesive joint is investigated for the shapes of the model curve and their parameters. And the numerical solutions are compared with the test results of CFRP sheet adhesive joints.

  • PDF

DULEX, A Wearable Hand Rehabilitation Device for Stroke Survivals (뇌졸중 환자를 위한 착용형 손 재활훈련기기, DULEX)

  • Kim, Young-Min;Moon, In-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.919-926
    • /
    • 2010
  • This paper proposes a wearable hand rehabilitation device, DULEX, for persons with functional paralysis of upper-limbs after stoke. DULEX has three degrees of freedom for rehabilitation exercises for wrist and fingers except the thumb. The main function of DULEX is to extend the range of motions of finger and wrist being contracture. DULEX is designed by using a parallel mechanism, and its parameters such as length and location of links are determined by kinematic analysis. The motion trajectory of the designed DULEX is aligned to human hand to prevent a slip. To reduce total weight of DULEX, artificial air muscles are used for actuating each joint motion. In feedback control, each joint angle is indirectly estimated from the relations of the input air pressure and the output muscle length. Experimental results show that DULEX is feasible in hand rehabilitation for stroke survivals.

Evaluation on the Behavior of Slip Critical Joints with TS High Strength Bolts Subjected to a Size of Bolt Holes (볼트 구멍 크기에 따른 TS 고력볼트 접합부 거동 평가)

  • Lee, Hyeon Ju;Kim, Kang Seok;Nah, Hwan Seon;Lee, Kang Min;Kim, Hyun Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.136-143
    • /
    • 2011
  • The oversized and slotted holes are frequently required for the built-up in construction sites. The foreign provisions specify the reduction of the slip load subjected to the size of bolt holes and the direction of load. There are no domestic building codes and researches on the bolt holes. Therefore, it is necessary to evaluate a change of joint strength quantitatively according to the bolt-hole size and surface condition by means of experiment. This study was conducted to evaluate the slip load subjected to the size of bolt holes, and measured on a change of clamping force of high strength bolts during 168 and 800 hours to analyze the trend of relaxation after fastening bolts. Torque shear bolts defined on KS B 2819 was used for the specimen. Test results exhibit that the variation on the slip load of the others was below 10% by contrast with the standard hole and the highest rate of relaxation was 2.66% of the initial clamping force at the case of the long-slotted hole of 2.5D.

Effective Methods Reducing Joint Vibration and Elongation in High speed Rail Bridge (고속철도교 신축부의 진동 및 신축의 효율적인 저감 방안)

  • Min, Kyung-Ju;Kang, Tae-Ku;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.800-806
    • /
    • 2011
  • Thermal expansion which occurs at the high speed rail joint is proportional to the free length from the point of fixity. This thermal expansion behaves similar to free expansion because the girder longitudinal stiffness is much larger than longitudinal resistance of rail pads. But the longitudinal displacement in the long rail is nominal because the longitudinal support condition of the girder is normally MFM(movable-fix-movable) system. Due to these girder expansion characteristics, there is longitudinal relative displacement at the rail pad and rail fastener spring which connects rail and girder. If the relative displacement between rail and girder is beyond the elastic limit for the rail pad, rail fastener system shall be applied using sliding fastener to prevent rail pad damage and fastener separation resulting from slip. On the other hand, train vertical vibration and tilting can occur due to the lack of fastener vertical force if the sliding fastener is applied at the girder joint. In the high speed rail bridge, vibration can occur due to the spring stiffness of the elastomeric bearing, also both vertical downward and upward displacement can occur. The elastomeric bearing vertical movement can cause rail displacement and finally the stability of the ballast is reduced because the gravel movement is induced.

  • PDF

An optical sensor of a probing system for inspection of PCBs (인쇄회로기판 검사용 프로브시스템의 광학센서)

  • 심재홍;조형석;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1742-1745
    • /
    • 1997
  • We have developed a highly responsible probing system for inspection of electrical properties of assemble PCB$_{s}$ (printed circuit boards). However, as the duration of the impact occurring between a probe and a solder joint on PCB is very short, it is very difficult to control the harmful peak impact force and the slip motion of the probe to sufficient level only by its vorce feedback control with high gains. To overcome these disadvantages of the prototype, it needs ot obtain some information of the solder joint in advance before the contact. In addition, to guarantee the reliability of the probing task, the probing system is required to measure several points around the probale target point at high speed. There fore, to meet such requirements, we propose a new noncontaet sensor capable of detecting simultaneously position and normal vectors of the multiple points around the probable target point in real time. By using this information, we can prepare a control strategy for stable contact motion on impact. In this paper, we described measuring priniciple, design, and development of the sensor. The effectiveness of the proposed sensor is verified through a series of experiments.s.

  • PDF

Manipulator Joint Friction Identification using Genetic Algorithm and its Experimental Verification (유전 알고리듬을 이용한 매니퓰레이터 조인트의 마찰력 규명 및 실험적 검증)

  • Kim, Gyeong-Ho;Park, Yun-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1633-1642
    • /
    • 2000
  • Like many other mechanical dynamic systems, flexible manipulator systems experience stiction or sticking friction, which may cause input-dependent instabilities. Manipulator performance can be enha nced by identifying friction but it is hard and expensive to measure friction by direct and precise sensing of contact displacements and forces. This study addresses the problem of identifying flexible manipulator joint friction. A dynamic model of a two-link flexible manipulator based upon finite element and Lagrange's method is constructed. The dynamic model includes the effects of joint compliances and actuator dynamics. Friction is also incorporated in the dynamic model to account for stick-slip at the joints. Next, the friction parameters are to be determined. The identification problem is posed as an optimization problem to be solved using nonlinear programming methods. A genetic algorithm is used to increase the convergence rate and the chances of finding the global optimum. The identified friction parameters are experimentally verified and it is expected that the identification technique is applicable to a system parameter identification problem associated with a wide class of nonlinear systems.