• 제목/요약/키워드: joint motion planning

검색결과 66건 처리시간 0.03초

형상 공간을 이용한 다관절 로보트의 충돌 회피 경로 계획 (Collision-Free Path Planning of Articulated Robot using Configuration Space)

  • 김정훈;최진섭;강희용;김동원;양성모
    • 한국자동차공학회논문집
    • /
    • 제2권6호
    • /
    • pp.57-65
    • /
    • 1994
  • A collision-free path planning algorithm between an articulated robot and polyhedral obstacles using configuration space is presented. In configuration space, a robot is treated as a point and obstacles are treated as grown forbidden regions. Hence path planning problem is transformed into moving a point from start position to goal position without entering forbidden regions. For mapping to 3D joint space, slice projection method is used for first revolute joint and inverse kinematics is used for second and third revolute joint considering kinematic characteristics of industrial robot. Also, three projected 2D joint spaces are used in search of collision-free path. A proper example is provided to illustrate the proposed algorithm.

  • PDF

양팔 로봇을 이용한 조립 작업에서 수명을 고려한 최적 운동 계획법 (Optimized Motion Planning Considering the Lifetime for Bimanual Robotic Assembly)

  • 황면중
    • 제어로봇시스템학회논문지
    • /
    • 제21권10호
    • /
    • pp.972-976
    • /
    • 2015
  • The objective of this research is to verify the quantitative efficiency of a bimanual robotic task. Bimanual robots can realize dexterous and complicated motions using two cooperating arms. However, its motion planning and control method are not simple for implementing flexible tasks such as assembly. In this paper, the proposed motion planning method is used to find an optimal solution satisfying a designed cost function and constraints with regard to the kinematics and redundancy of the bimanual robot. The simulation results show that the lifetime of the manipulator can be changed by the proposed cost function consisting of angular velocity and angular acceleration of each joint in the same assembly task.

View Time 개념을 이용한 지변 조인트 제한 지도(JCM) 상에서의 두 로보트의 충돌 회피에 관한 연구 (Time-Varying Joint Constraint Map Using View Time Concept and Its Use on the Collision Avoidance of Two Robots)

  • 남윤석;이범희;고명삼;고낙용
    • 대한전자공학회논문지
    • /
    • 제26권11호
    • /
    • pp.1770-1781
    • /
    • 1989
  • Two robots working in a common workspace may collide with each other. In this paper, a collision-free motion planning algorithm using view time concept is proposed to detect and avoid collision before robot motion. Collision may occur not only at the robot end effector but also at robot links. To detect and avoid potential collisions, the trajectory of the first robot is sampled periodically at every view time and the region in Cartesian space swept by the first robot is viewed as an obstacle during a single sampling period. The forbidden region in the joint constraint map (JCM). The JCM's are obtained in this way at every view time. An algorithm is established for collision-free motion planning of the two robot system from the sequence of JCM's and it is verified by simulations.

  • PDF

Adaptive Enhancement Method for Robot Sequence Motion Images

  • Yu Zhang;Guan Yang
    • Journal of Information Processing Systems
    • /
    • 제19권3호
    • /
    • pp.370-376
    • /
    • 2023
  • Aiming at the problems of low image enhancement accuracy, long enhancement time and poor image quality in the traditional robot sequence motion image enhancement methods, an adaptive enhancement method for robot sequence motion image is proposed. The feature representation of the image was obtained by Karhunen-Loeve (K-L) transformation, and the nonlinear relationship between the robot joint angle and the image feature was established. The trajectory planning was carried out in the robot joint space to generate the robot sequence motion image, and an adaptive homomorphic filter was constructed to process the noise of the robot sequence motion image. According to the noise processing results, the brightness of robot sequence motion image was enhanced by using the multi-scale Retinex algorithm. The simulation results showed that the proposed method had higher accuracy and consumed shorter time for enhancement of robot sequence motion images. The simulation results showed that the image enhancement accuracy of the proposed method could reach 100%. The proposed method has important research significance and economic value in intelligent monitoring, automatic driving, and military fields.

허리 구조를 갖는 복합 바퀴-다리 이동형 로봇의 설계 (Design of Hybrid Wheeled and Legged Mobile Robot with a Waist Joint)

  • 최대규;정동혁;김용태
    • 한국지능시스템학회논문지
    • /
    • 제24권3호
    • /
    • pp.304-309
    • /
    • 2014
  • 본 논문에서는 허리 구조를 갖는 복합 바퀴-다리 이동형 로봇의 설계 방법을 제안한다. 제안된 복합 이동형 로봇은 비평탄 및 평탄 지형에서의 효과적인 이동을 위하여 로봇의 다리에 바퀴가 결합된 복합 바퀴-다리 구조와 로봇 주행 중 보행 자세로의 안정적인 전환과 비평탄 지형에서 기구적인 제한의 개선을 위하여 허리 관절을 갖는 구조로 설계하였다. 또한 다양한 지형을 인지하기 위하여 LRF센서, PSD센서, CCD 카메라를 사용하였다. 제안한 로봇 시스템의 검증을 위해 지형별 주행과 보행 자세를 선택할 수 있는 운동 계획 기법을 제안하였다. 실제 복합 바퀴-다리 이동형 로봇을 설계 및 제작하고, 제안된 운동계획을 사용한 실험을 통해 지형에 따른 효율적인 이동 성능을 검증하였다.

허리관절을 가지는 4족보행로봇의 지그재그 걸음새 계획 (Discontinuous Zigzag Gait Planning of Quadruped Walking Robot with an Articulated Spine)

  • 박세훈;하영호;이연정
    • 제어로봇시스템학회논문지
    • /
    • 제10권8호
    • /
    • pp.703-710
    • /
    • 2004
  • This paper presents discontinuous zigzag gait analysis for a newly modeled quadruped walking robot with an articulated spine which connects the front and rear parts of the body. An articulated spine walking robot can move easily from side to side, which is an important feature to guarantee a larger gait stability margin than that of a conventional single rigid-body walking robot. First, we suggest a kinematic modeling of an articulated spine robot which has new parameters such as a waist-joint angle, a rotate angle of a front and rear body and describe characteristics of gait using an articulated spine. Next, we compared the difference of walking motion of newly modeled robot with that of a single rigid-body robot and analyzed the gait of an articulated spine robot using new parameters. On the basis of above result, we proposed a best walking motion with maximum stability margin. To show the effectiveness of proposed gait planning by simulation, firstly the fastest walking motion is identified based on the maximum stride, because the longer the stride, the faster the walking speed. Next, the gait stability margin variation of an articulated spine robot is compared according to the allowable waist-joint angle.

기구학적 여유도와 ZMP 구속 조건을 이용한 매니퓰레이터의 동작 계획 (Motion Planning of Manipulators Using Kinematic Redundancy and ZMP Constraint Condition)

  • 최재연;윤현수;이병주
    • 로봇학회논문지
    • /
    • 제6권4호
    • /
    • pp.308-316
    • /
    • 2011
  • This work deals with development of effective redundancy resolution algorithms for the motion control of manipulator. Differently from the typical kinematically redundant robots that are attached to the fixed ground, the ZMP condition should be taken into account in the manipulator motion in order to guarantee the system stability. In this paper, a new motion planning algorithm for redundant manipulator not fixed to the ground is introduced. A sequential redundancy resolution algorithm is proposed, which ensures the ZMP (Zero Moment Point) stability, the planned operational motion, and additional sub-criteria such as joint limit index. A geometric constraint equation derived by reshaping the existing ZMP equation enables one to employ the sequential redundancy algorithm. The feasibility of the proposed algorithm is verified by simulating a redundant manipulator model.

'관측 시간'개념을 이용한 로보트의 시변 장애물 회피 동작 계획 (Robot motion planning for time-varying obstacle avoidance using view-time concept)

  • 고낙용;이범희;고명삼;남윤석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1040-1045
    • /
    • 1991
  • An approach to time-varying obstacle avoidance problem is pursued. The mathematical formulation of the problem is given in Cartesian space and in joint space. To deal with the time-varying obstacles, view-time is introduced. A view-time is the time interval viewing the time-varying obstacles to model equivalent stationary obstacles. For the analysis of the properties of the view-time, avoidability measure is defined as a measure of easiness for a robot to avoid obstacles. Based on the properties, a motion planning strategy to avoid time-varying obstacles is derived. An application of the strategy to the collision-free motion planning of two SCARA robots and the simulation on the application are given.

  • PDF

이족로봇의 동적 보행계획과 역동역학 해석 (Dynamic Walking Planning and Inverse Dynamic Analysis of Biped Robot)

  • 박인규;김진걸
    • 한국정밀공학회지
    • /
    • 제17권9호
    • /
    • pp.133-144
    • /
    • 2000
  • The dynamic walking planning and the inverse dynamics of the biped robot is investigated in this paper. The biped robot is modeled with 14 degrees of freedom rigid bodies considering the walking pattern and kinematic construction of humanoid. The method of the computer aided multibody dynamics is applied to the dynamic analysis. The equations of motion of biped are initially represented as terms of the Cartesian corrdinates then they are converted to the minimum number of equations of motion in terms of the joint coordinates using the velocity transformation matrix. For the consideration of the relationships between the ground and foot the holonomic constraints are added or deleted on the equations of motion. the number of these constraints can be changed by types of walking patterns with three modes. In order for the dynamic walking to be stabilizable optimized trunk positions are iteratively determined by satisfying the system ZMP(Zero Moment Point) and ground conditions.

  • PDF

A method of minimum-time trajectory planning ensuring collision-free motion for two robot arms

  • Lee, Jihong;Bien, Zeungnam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.990-995
    • /
    • 1990
  • A minimum-time trajectory planning for two robot arms with designated paths and coordination is proposed. The problem considered in this paper is a subproblem of hierarchically decomposed trajectory planning approach for multiple robots : i) path planning, ii) coordination planning, iii) velocity planning. In coordination planning stage, coordination space, a specific form of configuration space, is constructed to determine collision region and collision-free region, and a collision-free coordination curve (CFCC) passing collision-free region is selected. In velocity planning stage, normal dynamic equations of the robots, described by joint angles, velocities and accelerations, are converted into simpler forms which are described by traveling distance along collision-free coordination curve. By utilizing maximum allowable torques and joint velocity limits, admissible range of velocity and acceleration along CFCC is derived, and a minimum-time velocity planning is calculated in phase plane. Also the planning algorithm itself is converted to simple numerical iterative calculation form based on the concept of neural optimization network, which gives a feasible approximate solution to this planning problem. To show the usefulness of proposed method, an example of trajectory planning for 2 SCARA type robots in common workspace is illustrated.

  • PDF