• Title/Summary/Keyword: joint models

Search Result 742, Processing Time 0.025 seconds

Single-Plane Fluoroscopic Three-Dimensional Kinematics of Normal Stifle Joint in Beagle Dogs

  • Kim, Hyungkyoo;Jeong, Jaemin;Seo, Jeonhee;Lee, Young-Won;Choi, Ho-Jung;Park, Jiyoung;Jeong, Seong Mok;Lee, Haebeom
    • Journal of Veterinary Clinics
    • /
    • v.34 no.5
    • /
    • pp.318-324
    • /
    • 2017
  • The objective of this study was to establish kinematic reference ranges for the femorotibial (FT) joint and the patellofemoral (PF) joint in healthy small-breed dogs by measuring 3D kinematics at the walk. Single-plane fluoroscopy was used to image the stifle joints of five healthy beagle dogs while the dogs were walking. 3D bone models of the femur, patella, and tibia were reconstructed by computed tomography scanning of the beagle dogs' hind limbs. The shape-matching technique was used to measure kinematic data from the fluoroscopic images and the 3D bone models. The cranial translation of the tibia during walking was inversely proportional to the FT joint flexion. There were significant correlations between the patellar motion and the tibial motion. The FT joint flexion had a strong correlation with the patellar proximodistal translation and flexion. Additionally, the tibial mediolateral translation had a strong correlation with the patellar shift and tilt. In this study, normal in vivo 3D FT joint and PF joint kinematics were demonstrated, and the average kinematic parameters were determined in walking beagle dogs.

A scheme of tunnel design considering rock discontinuities (불연속면을 고려한 터널의 설계 및 보강 방안)

  • 문상조;허도학;장석부
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.231-237
    • /
    • 2001
  • This paper presents some proposed methods for discontinuum analysis with rock discontinuities data acquisited in tunnel design stage. The limit equilibrium method for rock block sliding and falling proposed in this paper can consider the tunnel excavation and support stage, and, to the extent, the standard deviations and means of joint set orientation. Simple Distinct Elemet modelling methods are recommended in estimating the stability of tunnels in jointed rock masses. Because, the simple models are likely to show more consistent and clear than very complex model with finite joint length and joint deviation parameters.

  • PDF

Flexural behavior and resistance of uni-planar KK and X tubular joints

  • Chen, Yiyi;Wang, Wei
    • Steel and Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.123-140
    • /
    • 2003
  • The importance of the research on moment-resistant properties of unstiffened tubular joints and the research background are introduced. The performed experimental research on the bending rigidity and capacity of the joints is reported. The emphasis is put on the discussion of the flexural behavior of the joints including sets of geometrical parameters of the joints and several loading combinations. Procedures and results of loading tests on four full size joints in planar KK and X configuration are described in details at first. Mechanical models are proposed to analyze the joint specimens. Three-dimensional nonlinear FE models are established and verified with the experimental results. By comparing the experimental data with the results of the analysis, it is reported reasonable to carry out the structural analysis under the assumption that the joint is fully rigidly connected, and their bending capacities can assure the strength of the members connected under certain limitation. Furthermore, a parametric formula for inplane bengding rigidity of T and Y type tubular joints is proposed on the basis of FE calculation and regression analysis. Compared with test results, it is shown that the parametric formula developed in this paper has good applicability.

Human Activity Recognition Using Spatiotemporal 3-D Body Joint Features with Hidden Markov Models

  • Uddin, Md. Zia;Kim, Jaehyoun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2767-2780
    • /
    • 2016
  • Video-based human-activity recognition has become increasingly popular due to the prominent corresponding applications in a variety of fields such as computer vision, image processing, smart-home healthcare, and human-computer interactions. The essential goals of a video-based activity-recognition system include the provision of behavior-based information to enable functionality that proactively assists a person with his/her tasks. The target of this work is the development of a novel approach for human-activity recognition, whereby human-body-joint features that are extracted from depth videos are used. From silhouette images taken at every depth, the direction and magnitude features are first obtained from each connected body-joint pair so that they can be augmented later with motion direction, as well as with the magnitude features of each joint in the next frame. A generalized discriminant analysis (GDA) is applied to make the spatiotemporal features more robust, followed by the feeding of the time-sequence features into a Hidden Markov Model (HMM) for the training of each activity. Lastly, all of the trained-activity HMMs are used for depth-video activity recognition.

An Experimental Study on the Optimal Arrangement of Cameras Used for the Robot's Vision Control Scheme (로봇 비젼 제어기법에 사용된 카메라의 최적 배치에 대한 실험적 연구)

  • Min, Kwan-Ung;Jang, Wan-Shik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.15-25
    • /
    • 2010
  • The objective of this study is to investigate the optimal arrangement of cameras used for the robot's vision control scheme. The used robot's vision control scheme involves two estimation models, which are the parameter estimation and robot's joint angle estimation models. In order to perform this study, robot's working region is divided into three work spaces such as left, central and right spaces. Also, cameras are positioned on circular arcs with radius of 1.5m, 2.0m and 2.5m. Seven cameras are placed on each circular arc. For the experiment, nine cases of camera arrangement are selected in each robot's work space, and each case uses three cameras. Six parameters are estimated for each camera using the developed parameter estimation model in order to show the suitability of the vision system model in nine cases of each robot's work space. Finally, the robot's joint angles are estimated using the joint angle estimation model according to the arrangement of cameras for robot's point-position control. Thus, the effect of camera arrangement used for the robot's vision control scheme is shown for robot's point-position control experimentally.

Optimization of the Elastic Joint of Train Bogie Using by Response Surface Model (반응표면모델에 의한 철도 차량 대차의 탄성조인트 최적설계)

  • Park, Chan-Gyeong;Lee, Gwang-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.661-666
    • /
    • 2000
  • Optimization of the elastic joint of train is performed according to the minimization of ten responses which represent driving safety and ride comfort of train and analyzed by using the each response se surface model from stochastic design of experiments. After the each response surface model is constructed, the main effect and sensitivity analyses are successfully performed by 2nd order approximated regression model as described in this paper. We can get the optimal solutions using by nonlinear programming method such as simplex or interval optimization algorithms. The response surface models and the optimization algorithms are used together to obtain the optimal design of the elastic joint of train. the ten 2nd order polynomial response surface models of the three translational stiffness of the elastic joint (design factors) are constructed by using CCD(Central Composite Design) and the multi-objective optimization is also performed by applying min-max and distance minimization techniques of relative target deviation.

A Study on Dynamic Characteristics and Durability of Multi-joint Boom for Demolition Water Vehicle (파괴방수차 다관절 붐의 동특성 및 내구성에 관한 연구)

  • Kim, Jin-Soo;So, Soo-Hyun;Lim, Su-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4769-4775
    • /
    • 2014
  • This paper discusses the dynamics stress of each boom, which occurs as a result of the conflicts on a multi-joint boom at the end effector and structure. In this process, CATIA was applied to create 3D modeling, ADAMS and ANSYS were then performed using mesh analysis by obtaining the stress data to create a MNF(Modal Neutral File) of multi-joint boom. Two types of MNF models were analyzed using ADAMS FFT(Fast Fourier Transform) performing to check the validity of each model. In this process, the models were verified by ADAMS, which performs the dynamic characteristics of conflict. The ADAMS Durability was used to analyze the maximum stress between the multi-joint boom and structure.

A joint probability distribution model of directional extreme wind speeds based on the t-Copula function

  • Quan, Yong;Wang, Jingcheng;Gu, Ming
    • Wind and Structures
    • /
    • v.25 no.3
    • /
    • pp.261-282
    • /
    • 2017
  • The probabilistic information of directional extreme wind speeds is important for precisely estimating the design wind loads on structures. A new joint probability distribution model of directional extreme wind speeds is established based on observed wind-speed data using multivariate extreme value theory with the t-Copula function in the present study. At first, the theoretical deficiencies of the Gaussian-Copula and Gumbel-Copula models proposed by previous researchers for the joint probability distribution of directional extreme wind speeds are analysed. Then, the t-Copula model is adopted to solve this deficiency. Next, these three types of Copula models are discussed and evaluated with Spearman's rho, the parametric bootstrap test and the selection criteria based on the empirical Copula. Finally, the extreme wind speeds for a given return period are predicted by the t-Copula model with observed wind-speed records from several areas and the influence of dependence among directional extreme wind speeds on the predicted results is discussed.

Structural Behavior of Beam-Column Joints Consisting of Composite Structures

  • Lee, Seung-Jo;Park, Jung-Min;Kim, Wha-Jung
    • KCI Concrete Journal
    • /
    • v.14 no.3
    • /
    • pp.111-120
    • /
    • 2002
  • This study proposes a joint model consisting of different types of members as a new structural system, and then investigates the resulting structural behavior. The joint model consists of a concrete-filled steel tube column (CFT) together with a steel reinforced concrete at the end plus reinforced concrete beam at the center. For comparison, two other joint models were designed, that are, a CPT with a reinforced concrete beam, and a CFT with a steel reinforced concrete at the end plus steel concrete beam at the center, then their joint capacity and rigidity, energy absorption capacity, etc., were all investigated. From the results, the CFT column with a steel reinforced concrete at the end plus steel concrete beam at the center was outstanding in terms of its capacity and rigidity. The results of this analysis demonstrate that an adequate connection type and reinforcement method with different materials of increasing the rigidity, thereby producing a capacity improvement along with protection from pre-fractures.

  • PDF

Occupant Behavior Analysis of Simplified Full Car Model in Consideration of Joint (결합부 강성을 고려한 단순차체모델의 승객거동 해석)

  • 김홍욱;박신희;강신유;한동철;김정원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.220-227
    • /
    • 1998
  • In substitution of beam-nonlinear spring model for real-car, it may have errors due to complicated characteristics of joint and overestimation of joints stiffness. In this research, a method for the joint modeling was suggested by nonlinear static and dynamic analyses of beam and shell joint models and verified by the application of accomplished joint modeling method to simplified full car model. In consequence, modified simplified full car model was improved in local acceleration and rigid wall force. Finally, the frontal crash analyses with the dummy were established and the accelerations of accelerations of head, chest and pelvis had good agreements with those of shell model.

  • PDF