• Title/Summary/Keyword: joint models

Search Result 742, Processing Time 0.028 seconds

Modeling and Analysis for Efficient Joint Combat Fire Operation of Army Artillery and Army Aviation (효율적인 육군항공과 포병자산의 통합화력 운용방안 판단을 위한 모델링 방법론 및 분석)

  • Lim, Jong-Won;Kwon, Hyog-Lae;Lee, Tae-Eog
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.2
    • /
    • pp.47-55
    • /
    • 2014
  • Most combat simulation models, including Korean Army's combat models for simulation analysis, have too much limitations to be used for analysis of complex combats like joint combat fires. We analyze requirements for modeling and simulation of Fire-Eagle, which is a joint combat fire model of ground combat fires and army aviation. We then propose a simulation model for Fire Eagle and derive operational strategies for improving the joint combat fire. To do these, we analyze effectiveness of specific operational plans and scenarios by using the simulation model. We demonstrate ways of developing efficient and effective operational plans from the simulation experimental results.

Evaluating the accuracy of a new nonlinear reinforced concrete beam-column element comprising joint flexibility

  • Izadpanah, Mehdi;Habibi, AliReza
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.525-535
    • /
    • 2018
  • This study presents a new beam-column model comprising material nonlinearity and joint flexibility to predict the nonlinear response of reinforced concrete structures. The nonlinear behavior of connections has an outstanding role on the nonlinear response of reinforced concrete structures. In presented research, the joint flexibility is considered applying a rotational spring at each end of the member. To derive the moment-rotation behavior of beam-column connections, the relative rotations produced by the relative slip of flexural reinforcement in the joint and the flexural cracking of the beam end are taken into consideration. Furthermore, the considered spread plasticity model, unlike the previous models that have been developed based on the linear moment distribution subjected to lateral loads includes both lateral and gravity load effects, simultaneously. To confirm the accuracy of the proposed methodology, a simply-supported test beam and three reinforced concrete frames are considered. Pushover and nonlinear dynamic analysis of three numerical examples are performed. In these examples the nonlinear behavior of connections and the material nonlinearity using the proposed methodology and also linear flexibility model with different number of elements for each member and fiber based distributed plasticity model with different number of integration points are simulated. Comparing the results of the proposed methodology with those of the aforementioned models describes that suggested model that only uses one element for each member can appropriately estimate the nonlinear behavior of reinforced concrete structures.

Transcutaneous electrical nerve stimulation, acupuncture, and spinal cord stimulation on neuropathic, inflammatory and, non-inflammatory pain in rat models

  • Sato, Karina Laurenti;Sanada, Luciana Sayuri;da Silva, Morgana Duarte;Okubo, Rodrigo;Sluka, Kathleen A.
    • The Korean Journal of Pain
    • /
    • v.33 no.2
    • /
    • pp.121-130
    • /
    • 2020
  • Background: Transcutaneous electrical nerve stimulation (TENS), manual acupuncture (MA), and spinal cord stimulation (SCS) are used to treat a variety of pain conditions. These non-pharmacological treatments are often thought to work through similar mechanisms, and thus should have similar effects for different types of pain. However, it is unclear if each of these treatments work equally well on each type of pain condition. The purpose of this study was to compared the effects of TENS, MA, and SCS on neuropathic, inflammatory, and non-inflammatory pain models. Methods: TENS 60 Hz, 200 ㎲, 90% motor threshold (MT), SCS was applied at 60 Hz, an intensity of 90% MT, and a 0.25 ms pulse width. MA was performed by inserting a stainless-steel needle to a depth of about 4-5 mm at the Sanyinjiao (SP6) and Zusanli (ST36) acupoints on a spared nerve injury (SNI), knee joint inflammation (3% carrageenan), and non-inflammatory muscle pain (intramuscular pH 4.0 injections) in rats. Mechanical withdrawal thresholds of the paw, muscle, and/or joint were assessed before and after induction of the pain model, and daily before and after treatment. Results: The reduced withdrawal thresholds were significantly reversed by application of either TENS or SCS (P < 0.05). MA, on the other hand, increased the withdrawal threshold in animals with SNI and joint inflammation, but not chronic muscle pain. Conclusions: TENS and SCS produce similar effects in neuropathic, inflammatory and non-inflammatory muscle pain models while MA is only effective in inflammatory and neuropathic pain models.

A Study on Numerical Approximation of Joint Stiffness of Vehicle Structures (차체 구조물 결합부 강성의 근사적 수식화에 관한 연구)

  • 박정률;이상범;임홍재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.155-163
    • /
    • 2001
  • Joint stiffnesses can affect the vibrational characteristics of car body structures and, therefore, should be included in vehicle system models. In this paper, a numerical approximation of joint stiffness is presented for considering joint flexibility of thin walled beam jointed structures. Using the proposed method, it is possible to optimize joint structures considering the change of section shapes in vehicle structures. The numerical approximation of joint stiffnesses is derived using the RSM(Response Surface Method) in terms of beam section properties. The study shows that joint stiffnesses can be effectively determined in designing vehicle structure.

  • PDF

Development and validation of a computational multibody model of the elbow joint

  • Rahman, Munsur;Cil, Akin;Johnson, Michael;Lu, Yunkai;Guess, Trent M.
    • Advances in biomechanics and applications
    • /
    • v.1 no.3
    • /
    • pp.169-185
    • /
    • 2014
  • Computational multibody models of the elbow can provide a versatile tool to study joint mechanics, cartilage loading, ligament function and the effects of joint trauma and orthopaedic repair. An efficiently developed computational model can assist surgeons and other investigators in the design and evaluation of treatments for elbow injuries, and contribute to improvements in patient care. The purpose of this study was to develop an anatomically correct elbow joint model and validate the model against experimental data. The elbow model was constrained by multiple bundles of non-linear ligaments, three-dimensional deformable contacts between articulating geometries, and applied external loads. The developed anatomical computational models of the joint can then be incorporated into neuro-musculoskeletal models within a multibody framework. In the approach presented here, volume images of two cadaver elbows were generated by computed tomography (CT) and one elbow by magnetic resonance imaging (MRI) to construct the three-dimensional bone geometries for the model. The ligaments and triceps tendon were represented with non-linear spring-damper elements as a function of stiffness, ligament length and ligament zero-load length. Articular cartilage was represented as uniform thickness solids that allowed prediction of compliant contact forces. As a final step, the subject specific model was validated by comparing predicted kinematics and triceps tendon forces to experimentally obtained data of the identically loaded cadaver elbow. The maximum root mean square (RMS) error between the predicted and measured kinematics during the complete testing cycle was 4.9 mm medial-lateral translational of the radius relative to the humerus (for Specimen 2 in this study) and 5.30 internal-external rotation of the radius relative to the humerus (for Specimen 3 in this study). The maximum RMS error for triceps tendon force was 7.6 N (for Specimen 3).

Finite element development of a Beam-column connection with CFRP sheets subjected to monotonic and cyclic loading

  • Rahimipour, Arash;Hejazi, Farzad;Vaghei, Ramin;Jaafar, Mohd Saleh
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1083-1096
    • /
    • 2016
  • Beam-column joints are recognized as the weak points of reinforcement concrete frames. The ductility of reinforced concrete (RC) frames during severe earthquakes can be measured through the dissipation of large energy in beam-column joint. Retrofitting and rehabilitating structures through proper methods, such as carbon fiber reinforced polymer (CFRP), are required to prevent casualties that result from the collapse of earthquake-damaged structures. The main challenge of this issue is identifying the effect of CFRP on the occurrence of failure in the joint of a cross section with normal ductility. The present study evaluates the retrofitting method for a normal ductile beam-column joint using CFRP under monotonic and cyclic loads. Thus, the finite element model of a cross section with normal ductility and made of RC is developed, and CFRP is used to retrofit the joints. This study considers three beam-column joints: one with partial CFRP wrapping, one with full CFRP wrapping, and one with normal ductility. The two cases with partial and full CFRP wrapping in the beam-column joints are used to determine the effect of retrofitting with CFRP wrapping sheets on the behavior of the beam-column joint confined by such sheets. All the models are subjected to monotonic and cyclic loading. The final capacity and hysteretic results of the dynamic analysis are investigated. A comparison of the dissipation energy graphs of the three connections shows significant enhancement in the models with partial and full CFRP wrapping. An analysis of the load-displacement curves indicates that the stiffness of the specimens is enhanced by CFRP sheets. However, the models with both partial and full CFRP wrapping exhibited no considerable improvement in terms of energy dissipation and stiffness.

Thermohydromechanical Stability Study on the Joint Characteristics and Depth Variations in the Region of an Underground Radwaste Repository (절리 발달 특성 및 심도 변화에 의한 방사성폐기물 처분장 주변영역에서의 열수리역학적 안정성 연구)

  • Kim, Jhinwung;Daeseok Bae;Park, Chongwon
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.153-168
    • /
    • 2003
  • The objective of this present study is to understand long term(500 years) thermohydromechanical interaction behavior in the vicinity of a repository cavern on the joint location and repository depth variations. The model includes a saturated discontinuous granitic rock mass, PWR spent nuclear fuel in a disposal canister surrounded with compacted bentonite inside a deposition hole, and mixed bentonite backfilled in the rest of the space within a repository cavern. It is assumed that two joint sets exist within the model. Joint set 1 includes joints of 56$^{\circ}$ dip angle, spaced at 20 m, and joint set 2 is in the perpendicular direction to joint set 1 and includes joints of 34$^{\circ}$ dip angle, spaced at 20 m. In order to understand the behavior change on the joint location variations, 5 different models of 500m in depth are analyzed, and additional 3 different models of 1000 m in depth are analyzed to understand the effect of depth variation.

Study of compressive behavior of triple joints using experimental test and numerical simulation

  • Sarfarazi, Vahab;Wang, Xiao;Nesari, Mojtaba;Ghalam, Erfan Zarrin
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.49-62
    • /
    • 2022
  • Experimental and discrete element methods were used to investigate the effects of triple joints lengths and triple joint angle on the failure behavior of rock mass under uniaxial compressive test. Concrete samples with dimension of 20 cm × 20 cm × 5 cm were prepared. Within the specimen, three imbedded joint were provided. The joint lengths were 2 cm, 4cm and 6 cm. In constant joint lengths, the angle between middle joint and other joints were 30°, 60°, 90°, 120° and 150°. Totally 15 different models were tested under compression test. The axial load rate on the model was 0.05 mm/min. Concurrent with experimental tests, the models containing triple joints, length and joint angle are similar to the experiments, were numerical by Particle flow code in two dimensions (PFC2D). Loading rate in numerical modelling was 0.05 mm/min. Tensile strength of material was 1 MPa. The results show that the failure behaviors of rock samples containing triple joints were governed by both of the angle and the length of the triple joints. The uniaxial compressive strengths (UCS) of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. Furthermore, it was shown that the compressive behavior of discontinuities is related to the number of the induced tensile cracks which are increased by decreasing the joint length. Along with the damage failure of the samples, the acoustic emission (AE) activities are excited. There were only a few AE hits in the initial stage of loading, then AE hits rapidly grow before the applied stress reached its peak. In addition, every stress drop was accompanied by a large number of AE hits. Finally, the failure pattern and failure strength are similar in both methods i.e., the experimental testing and the numerical simulation methods.

Study of cracks in compressed concrete specimens with a notch and two neighboring holes

  • Vahab, Sarfarazi;Kaveh, Asgari;Shirin, Jahanmiri;Mohammad Fatehi, Marji;Alireza Mohammadi, Khachakini
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.317-330
    • /
    • 2022
  • This paper investigated computationally and experimentally the interaction here between a notch as well as a micropore under uniaxial compression. Brazilian tensile strength, uniaxial tensile strength, as well as biaxial tensile strength are used to calibrate PFC2d at first. Then, uniaxial compression test was conducted which they included internal notch and micro pore. Experimental and numerical building of 9 models including notch and micro pore were conducted. Model dimensions of models are 10 cm × 10 cm × 5 cm. Joint length was 2 cm. Joints angles were 30°, 45° and 60°. The position of micro pore for all joint angles was 2cm upper than top of the joint, 2 cm upper than middle of joint and 2 cm upper than the joint lower tip, discreetly. The numerical model's dimensions were 5.4 cm × 10.8 cm. The fractures were 2 cm in length and had angularities of 30, 45, and 60 degrees. The pore had a diameter of 1 cm and was located at the top of the notch, 2 cm above the top, 2 cm above the middle, and 2 cm above the bottom tip of the joint. The uniaxial compression strength of the model material was 10 MPa. The local damping ratio was 0.7. At 0.016 mm per second, it loaded. The results show that failure pattern affects uniaxial compressive strength whereas notch orientation and pore condition impact failure pattern. From the notch tips, a two-wing fracture spreads almost parallel to the usual load until it unites with the sample edge. Additionally, two wing fractures start at the hole. Both of these cracks join the sample edge and one of them joins the notch. The number of wing cracks increased as the joint angle rose. There aren't many AE effects in the early phases of loading, but they quickly build up until the applied stress reaches its maximum. Each stress decrease was also followed by several AE effects. By raising the joint angularities from 30° to 60°, uniaxial strength was reduced. The failure strengths in both the numerical simulation and the actual test are quite similar.

Development of Clothes Design for Silver-Generation Women (실버세대의 여성을 위한 의복 디자인개발)

  • Seok, Hye-Jung;Han, Seung-Hee
    • Journal of the Korean Society of Costume
    • /
    • v.61 no.1
    • /
    • pp.47-57
    • /
    • 2011
  • This study is aimed at presenting the information on tailor-made clothes products which could positively relieve the psychological anxiety of the aged and enhance their living independence, and also at the development of clothes designs which could help them enjoy their healthy and activities. Based on the survey, the study conducted the research and analysis on the wearing practices, problems, and improvements for the clothes for the aged and found out their favorite clothes designs and colors. Based on the findings, the clothes models were recruited that reflect the physical features of silver-generation women and assist them with their joint protection. Moreover, the emphases were placed on the convenience of dressing or undressing, and the current fashion of development of clothes. The number of the clothes models developed were 11 for one pants suit, two skirt suits, one knit wear, one training wear, and one bolero.