• Title/Summary/Keyword: joint model

Search Result 2,580, Processing Time 0.028 seconds

Biomechanical evaluation of menisectomy using finite element method (유한요소 해석법을 이용한 반월상 연골 절제술의 생체역학적 평가)

  • Bae, Ji-Yong;Park, Jin-Hong;Song, Eun-Kyoo;Park, Sang-Jin;Jeon, In-Su
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1471-1472
    • /
    • 2008
  • To analyze biomechanical effects of various types of menisectomy in the knee joint, the contact area and pressure distribution of intact the knee joint and the operated by various menisectomies were studied by using finite element method their results are compared with each other. In this study, the femur, the tibia, the articular cartilage and the menisci were three dimensionally reconstructed using MR Images of healthy knee joint in full extension of 26 years old male. Also, three dimensional finite element model of the knee joint was constructed including the models of ligaments and tendons on the reconstructed three dimensional model. Bones were considered to be rigid, articular cartilage and menisci were considered as homogeneous, isotropic and linearly elastic materials and ligaments and tendons were modeled as hyperelastic materials. Based on the results, the effects of various types of menisectomy on the knee joints are clearly elucidated.

  • PDF

Analysis of Joint Life Insurance with Dependent Lifetime Distribution (상호 의존적 수명 분포하에서의 연생보험에 관한 연구)

  • Kang, Su-Hyun;Cha, Ji-Hwan
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.6
    • /
    • pp.771-785
    • /
    • 2011
  • Most studies on the joint life insurance assume the lifetimes of insurers to be mutually independent; however, there have been various studies that illustrate the dependency of insurers' lifetimes. Subsequently, some approaches to model this type of dependency have been suggested. This paper proposes a joint dependent lifetime distribution for coupled lives under common environmental effect and applies the proposed model to the study of the joint life insurance. In addition, we investigate the effect of the false assumption of independent lifetimes when there exists dependency between the insurers' lifetimes assumed in this paper.

The Properties for Structural Behavior of Beam-Column Joint Consisting of Composite Structure (혼합구조로 이루어진 보-기둥 접합부의 구조적 거동 특성)

  • Lee, Seung Jo;Park, Jung Min;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.445-455
    • /
    • 2000
  • This study proposed to beam-column joint model consisting of different type structural member to develop new structural system in the structural viewpoint as to a method to overcome various problem according to change of construction environment. This study promoted rigidity and capacity to stiffen reinforced concrete for steel structure end to increase rigidity of long spaned steel beam, and welt to steel flange to anchor U-shaped main bar of SRC structure end to easy stress flow between the different type structure. Through the series of experiments, proposed to possibility of this joint model, and investigated joint rigidity and capacity.

  • PDF

Behavior Characteristic of Shaping Formation according to Joint Type of Structures (구조의 절점 형식에 따른 형상 형성의 거동 특성)

  • Kim, Jin-Woo;Eom, Jang-Sub;Lee, Yong-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.18-24
    • /
    • 2012
  • This paper concerned with the behaviour of shaping formation and the erection for SCST structure by cable-tensioning for three kinds of structure models. The joint types of experimental models are ball type joints, bolt type joints with gusset plates, and bolt type joints. The feasibility of the proposed shaping method and the reliability of the established geometric model were confirmed with a nonlinear finite element analysis and an experimental investigation for full size scaled pyramid test model and three kinds of SCST structure models. The characteristic of the behaviour of each joint type is shown in the shaping test for practical design purposes. As a results, the behaviour characteristics of joints is very significant in shaping analysis of space structures. So the joint type should be considered in the design and analysis of the shape formation for space structures. Also, in the special field condition, it could be a fast and economical method for constructing the space structure.

A Joint Allocation Algorithm of Computing and Communication Resources Based on Reinforcement Learning in MEC System

  • Liu, Qinghua;Li, Qingping
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.721-736
    • /
    • 2021
  • For the mobile edge computing (MEC) system supporting dense network, a joint allocation algorithm of computing and communication resources based on reinforcement learning is proposed. The energy consumption of task execution is defined as the maximum energy consumption of each user's task execution in the system. Considering the constraints of task unloading, power allocation, transmission rate and calculation resource allocation, the problem of joint task unloading and resource allocation is modeled as a problem of maximum task execution energy consumption minimization. As a mixed integer nonlinear programming problem, it is difficult to be directly solve by traditional optimization methods. This paper uses reinforcement learning algorithm to solve this problem. Then, the Markov decision-making process and the theoretical basis of reinforcement learning are introduced to provide a theoretical basis for the algorithm simulation experiment. Based on the algorithm of reinforcement learning and joint allocation of communication resources, the joint optimization of data task unloading and power control strategy is carried out for each terminal device, and the local computing model and task unloading model are built. The simulation results show that the total task computation cost of the proposed algorithm is 5%-10% less than that of the two comparison algorithms under the same task input. At the same time, the total task computation cost of the proposed algorithm is more than 5% less than that of the two new comparison algorithms.

Combat Entity Based Modeling Methodology to Enable Joint Analysis of Performance/Engagement Effectiveness - Part 1 : Conceptual Model Design (성능/교전 효과도의 상호 분석이 가능한 전투 개체 기반의 모델링 방법론 - 제1부 : 개념 모델 설계)

  • Seo, Kyung-Min;Kim, Tag Gon;Song, Hae-Sang;Kim, Jung Hoon;Chung, Suk Moon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.223-234
    • /
    • 2014
  • This paper proposes a flexible and highly reusable modeling methodology for a next-generation combat entity which enables joint analysis of performance/engagement effectiveness. According to the scope of the proposed work, the paper is divided into two parts; Part 1 focuses on a conceptual model design, whereas Part 2 proposes detailed model specification and implementation. In Part 1, we, first, classify the combat entity model as combat logic and battlefield function sub-models for joint analysis. Based on the sub-models, we propose two dimensional model partition method, which creates six groups of a single combat entity model by two dimensions: three-activity and two-abstraction. This grouping enables us to reconfigure the combat entity model by sharing the same interface within the group, and the same interface becomes the fundamental basis of the flexible model composition. Furthermore, the proposed method provides a model structure that effectively reflects the real world and maximizes the multi-level reusability of a combat entity model. As a case study, we construct a model design for anti-surface ship warfare. The case study proves enhancement of model reusability in the process of scenario expansion from pattern running to wire guided torpedo operations.

A Study on Jointed Rock Mass Properties and Analysis Model of Numerical Simulation on Collapsed Slope (붕괴절토사면의 수치해석시 암반물성치 및 해석모델에 대한 고찰)

  • Koo, Ho-Bon;Kim, Seung-Hee;Kim, Seung-Hyun;Lee, Jung-Yeup
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.65-78
    • /
    • 2008
  • In case of cut-slopes or shallow-depth tunnels, sliding along with discontinuities or rotation could play a critical role in judging stability. Although numerical analysis is widely used to check the stability of these cut-slopes and shallow-depth tunnels in early design process, common analysis programs are based on continuum model. Performing continuum model analysis regarding discontinuities is possible by reducing overall strength of jointed rock mass. It is also possible by applying ubiquitous joint model to Mohr-Coulomb failure criteria. In numerical analysis of cut-slope, main geotechnical properties such as cohesion, friction angle and elastic modulus can be evaluated by empirical equations. This study tried to compare two main systems, RMR and GSI system by applying them to in-situ hazardous cut-slopes. In addition, this study applied ubiquitous joint model to simulation model with inputs derived by RMR and GSI system to compare with displacements obtained by in-situ monitoring. To sum up, numerical analysis mixed with GSI inputs and ubiquitous joint model proved to provide most reliable results which were similar to actual displacements and their patterns.

A Joint Motion Planning Based on a Bio-Mimetic Approach for Human-like Finger Motion

  • Kim Byoung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.217-226
    • /
    • 2006
  • Grasping and manipulation by hands can be considered as one of inevitable functions to achieve the performances desired in humanoid operations. When a humanoid robot manipulates an object by his hands, each finger should be well-controlled to accomplish a precise manipulation of the object grasped. So, the trajectory of each joint required for a precise finger motion is fundamentally necessary to be planned stably. In this sense, this paper proposes an effective joint motion planning method for humanoid fingers. The proposed method newly employs a bio-mimetic concept for joint motion planning. A suitable model that describes an interphalangeal coordination in a human finger is suggested and incorporated into the proposed joint motion planning method. The feature of the proposed method is illustrated by simulation results. As a result, the proposed method is useful for a facilitative finger motion. It can be applied to improve the control performance of humanoid fingers or prosthetic fingers.

Shade Avoidance and the Regulation of Leaf Inclination in Rice

  • Shin, Juhee;Park, Phun Bum
    • Rapid Communication in Photoscience
    • /
    • v.3 no.3
    • /
    • pp.53-55
    • /
    • 2014
  • The shade avoidance syndrome is a morphological and physiological response when plants are exposed to shade. Recent work in Arabidopsis had begun to define the molecular components of the shade avoidance syndrome in dicotyledonous model plant. However, little is known about the shade avoidance response networks in agriculturally important monocotyledon crops such as rice. Here, we found that the degree of bending at the lamina joint is inversely proportional to the R:FR ratio. To elucidate which phytochrome is involved in this response, we did lamina joint inclination assay with the rice phytochrome-deficient mutants (osphyA, osphyB, and osphyC) and the wild type plants. Whereas the osphyA and osphyC knockout mutants bent at the lamina joint in the far-red rich condition as the wild type plants, the osphyB knockout mutants no longer bent at the lamina joint in the far-red rich condition. These results suggest that PHYB acts as a sole photoreceptor in the lamina joint inclination response in rice.

Angular Displacement Measurement Using Optical Sensor (광학센서를 이용한 관절운동각도 측정)

  • Jung, Gu-In;Kim, Ji-Sun;Hur, Dong-Hun;Yu, Hwan-Dong;Lim, Sung-Hwan;Choi, Ju-Hyeon;Lee, Jeong-Hwan;Eom, Gwang-Moon;Jun, Jae-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1959-1965
    • /
    • 2011
  • Measuring the movement of joint angle of human body is very important clinically. Human joint angle displacement can be used to evaluate the degree of disease and disability. Also, we can determine the rehabilitation process with angular information. Conventional methods for measuring angular displacement are many weakness. The purpose of this study is to overcome the limitations of existing equipments by using optical method. For this reason, optical sensor system was used to correlate detected light signal with joint angle. Experimental results of the applied joint model in this study showed that joint angular displacement can be measured by optical signals. The suggested method is simple, durable, small, lightweight, convenient, and cost effective.