• Title/Summary/Keyword: joint mechanical properties

Search Result 483, Processing Time 0.031 seconds

Nonlinear Damper Model for the Quantification of joint Mechanical Properties (관절계 역학적 특성의 정량화를 위한 비선형 댐퍼모델)

  • EOM Gwang-Moon;LEE Chang-Han;KIM Chul-Seung;Heo Ji-Un
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.188-193
    • /
    • 2005
  • The purpose of this paper is to develop a more precise damper model of the joint for the quantification of the joint mechanical properties. We modified the linear damper model of a knee joint model to nonlinear one. The normalized RMS errors between the simulated and measured joint angle trajectories during passive pendulum test became smaller with the nonlinear damper model than those of the linear one which indicates the nonlinear damper model is better in precision and accuracy. The error between the experimental and simulated knee joint moment also reduced with the nonlinear damper model. The reduction in both the trajectory error and the moment error was significant at the latter part of the pendulum test where the joint angular velocity was small. The nonlinearity of the damper was significantly greater at thin subject group and this indicates the nonlinearity is a useful index of joint mechanical properties.

A New Method for the Identification of Joint Mechanical Properties (관절계 역학적 특성의 정량적 평가방법)

  • 엄광문;김석주;한태륜
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.209-218
    • /
    • 2004
  • The purpose of this paper is to suggest a practical and simple method for the identification of the joint mechanical properties and to apply it to human knee joints. The passive moment at a joint was modeled by three mechanical parts, that is, a gravity term, a linear damper term and a nonlinear spring term. Passive pendulum tests were performed in 5 fat and 5 thin men. The data of pendulum test were used to identify the mechanical properties of joints through sequential quadratic programming (SQP) with random initial values. The identification was successful where the normalized root-mean-squared (RMS) errors between the simulated and experimental joint angle trajectories were less than 10%. The parameter values of mechanical properties obtained in this study agreed with literature. The inertia, gravity and the damping constant were greater at fat men, which indicates more resistance to body movement and more energy consumption fer fat men. The suggested method is noninvasive and requires simple setup and short measurement time. It is expected to be useful in the evaluation of joint pathologies.

Properties of Mechanical Joint by Carbon Fiber/Epoxy Sandwich Composite Panels (탄소섬유/Epoxy 샌드위치 복합재판넬의 기계적 취부특성평가)

  • Oh, K.;Lee, S.;Jeong, J.;Cho, S.;Kim, J.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.121-124
    • /
    • 2005
  • This paper was about experimental test properties by mechnical joint of CF1263/Epoxy Al honeycomb panels. In case of mechanical joint using screw, nut shall be secured over than minimize third screw pitch. In case of insert backsheet for increase of joint force, increase weight for assemble by screw pitch. In case of insert backsheet with CF1263/Epoxy, predominant save weight and minimazer of displacement by tensile weight moreover predominant strength. In case of mechanical joint by rivet, rivet of Monobolt has over-hole in hole of CF1263/Epoxy but rivet of PROTRUDING has predominant of mechanical joint.

  • PDF

The effect of mortar type and joint thickness on mechanical properties of conventional masonry walls

  • Zengin, Basak;Toydemir, Burak;Ulukaya, Serhan;Oktay, Didem;Yuzer, Nabi;Kocak, Ali
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.579-585
    • /
    • 2018
  • Masonry walls are of a complex (anisotropic) structure in terms of their mechanical properties. The mechanical properties of the walls are affected by the properties of the materials used in wall construction, joint thickness and the type of masonry bond. The carried-out studies, particularly in the seismic zones, have revealed that the most of the conventional masonry walls were constructed without considering any engineering approach. Along with that, large-scale damages were detected on such structural elements after major earthquake(s), and such damages were commonly occurred at the brick-joint interfaces. The aim of this study was to investigate the effect of joint thickness and also type of mortar on the mechanical behavior of the masonry walls. For this aim, the brick masonry walls were constructed through examination of both the literature and the conventional masonry walls. In the construction process, a single-type of brick was combined with two different types of mortar: cement mortar and hydraulic lime mortar. Three different joint thicknesses were used for each mortar type; thus, a total of six masonry walls were constructed in the laboratory. The mechanical properties of brick and mortars, and also of the constructed walls were determined. As a conclusion, it can be stated that the failure mechanism of the brick masonry walls differed due to the mechanical properties of the mortars. The use of bed joint thickness not less than 20 mm is recommended in construction of conventional masonry walls in order to maintain the act of brick in conjunction with mortar under load.

Effect of Annealing on the Improvement of Strength of Butt Welded Joint (맞대기 이음용접의 강도향상을 위한 어니일링 효과에 관한 연구)

  • ;;Shin, Keun-Ha
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.2
    • /
    • pp.43-47
    • /
    • 1979
  • This paper presents the effect of stress relief annealing on mechanical properties in single Vee-groove welding joint. In this experiment, the investigation of annealing effect on mechanical properties of test material carried out by changing the annealing temperature from $600^{\circ}C$ to $900^{\circ}C$ under the given conditions. The results pbtained by this study are as follows: (1) Under the constant welding conditions, the tensile strength of test welded joint decrease in accordance with the increase of annealing temperature. The experimental results show that the reduction rate of tensile strength is about 35.09% of base metal strength. (2) Microhafdness distribution of welded joint bring about the maximum hardness near the bended line of welding joint. (3) Izod impact energy of welded joint in increase in according to the rise of annealing temperature and the peak energy of impact test occurs at $800^{\circ}C$

Effect of Surface Finish on Mechanical and Electrical Properties of Sn-3.5Ag Ball Grid Array (BGA) Solder Joint with Multiple Reflow (Sn-3.5Ag BGA 패키지의 기계적·전기적 특성에 미치는 PCB표면 처리)

  • Sung, Ji-Yoon;Pyo, Sung-Eun;Koo, Ja-Myeong;Yoon, Jeong-Won;Shin, Young-Eui;Jung, Seung-Boo
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.261-266
    • /
    • 2009
  • The mechanical and electrical properties of ball grid array (BGA) solder joints were measured, consisting of Sn-3.5Ag, with organic solderability preservative (OSP)-finished Cu pads and Electroless Nickel/Immersion Gold (ENIG) surface finishes. The mechanical properties were measured by die shear test. When ENIG PCB was upper joint and OSP PCB was lower joint, the highest shear force showed at the third reflow. When OSP PCB was upper joint and ENIG PCB was lower joint, the highest shear force showed at the forth reflow. For both joints, after the die shear results reached the highest shear force, shear force decreased as a function of increasing reflow number. Electrical property of the solder joint decreased with the function of increasing reflow number. The scanning electron microscope results show that the IMC thickness at the bonding interface gets thicker while the number of reflow increases.

Mechanical Properties of the Flash Butt Welded Joint of 590MPa High Strength Steel (590MPa급 고강도강 플래시버트 용접이음부의 기계적특성)

  • Jeong, Bo-Young;Woo, In-Su;Kim, Jeong-Kil;Lee, Jong-Bong
    • Journal of Welding and Joining
    • /
    • v.25 no.2
    • /
    • pp.55-61
    • /
    • 2007
  • Flash butt weldability of 590MPa dual phase steel is carried out under micro metallographical examination and macro mechanical property tests. The objective of present study is to investigate the cause that brings on bond line fracture, and is to improve mechanical properties of the flash butt welded joint. The joint of flash butt welding has a superior tensile property, but has bad formability due to oxide formed at bond interface. The HAZ softening in the weld joint does not show. It was found that mechanical properties were increased with optimizing welding parameters and making application of oil dripping and post-weld heat treatment.

Evaluation of Microstructure and Mechanical Properties of Friction Stir Lap Jointed Inconel 600/SS 400 (겹치기 마찰교반접합된 Inconel 600/SS 400 합금의 미세조직과 기계적 특성 평가)

  • Song, Kuk-Hyun;Nakata, Kazuhiro
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.123-129
    • /
    • 2012
  • The microstructures and mechanical properties of friction stir welded lap joints of Inconel 600 and SS 400 were evaluated; friction stir welding was carried out at a tool rotation speed of 200 rpm and welding speed of 100 mm/min. Electron back-scattering diffraction and transmission electron microscopy were introduced to analyze the grain boundary characteristics and the precipitates, respectively. Application of friction stir welding was notably effective at reducing the grain size of the stir zone. As a result, the reduced average grain size of Inconel 600 ranged from $20{\mu}m$ in the base material to $8.5{\mu}m$ in the stir zone. The joint interface between Inconel 600 and SS 400 showed a sound weld without voids and cracks, and MC carbides with a size of around 50 nm were partially formed at the Inconel 600 area of lap joint interface. However, the intermetallic compounds that lead to mechanical property degradation of the welds were not formed at the joint interface. Also, a hook, along the Inconel 600 alloy from SS 400, was formed at the advancing side, which directly brought about an increase in the peel strength. In this study, we systematically discussed the evolution of microstructures and mechanical properties of the friction stir lap joint between Inconel 600 and SS 400.

Electro-mechanical properties of lap-jointed Bi-2223 tapes (Bi-2223테이프 겹치기 접합부(Lap-Joint)의 전기-기계적 특성)

  • Dizon, John Ryan C.;Dedicatoria, Marlon;Park, Sung-Taek;Jung, Yun-Chul;Shin, Hyung-Seop
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.285-286
    • /
    • 2008
  • In practical applications of HTS tapes for electric devices such as coils and power cables, the jointing of HTS tapes is needed. In magnet applications superconducting joints are needed to achieve very low resistance at the joint, but for power device applications, a slightly higher joint resistance may be acceptable. In this study, an economical joint with good mechanical and electrical integrity could be achieved for Bi-2223 tapes which can be applicable to electric power applications. A lap joint method has been used. The joint resistance and strength of the jointed Bi2223 tapes have been evaluated. Electro-mechanical properties of the joint sample under tension have been examined and compared with the case of the single tapes.

  • PDF

The Influence of Welding Conditions on Mechanical Properties and Microstructural Change of TIG Welded Joint in Stress Relieve Heat Treated Mg-AZ31B Alloy (응력제거 열처리한 Mg-AZ31B 합금 TIG 용접부의 기계적 특성과 미세조직 변화에 미치는 용접조건의 영향)

  • Kim, Yong-Gir;Chung, Dong-Seok;Bae, Cha-Hurn
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.4
    • /
    • pp.230-235
    • /
    • 2004
  • Present work was carried out to investigate the influence of welded conditions, such as welding current, diameter of welding wire on the microstructural change and mechanical properties of TIG welded joint in AZ31B Mg alloy. It was found that good and sound welded joint was achieved in all welding conditions. The grain size decreased with increasing welding current and decreasing diameter of welding wire. Also, the second phases were homogeneously distributed in the grain and grain boundary as decreasing welding current and diameter of welding wire. The ${\beta}$ discontinuos precipitates were observed in the welded joint, but this microstructure has not been reported by previous researchs in AZ31B Mg alloy. The hardness value is affected by the existence state of the second phase and the hardness of the welded joint region is lower than the other regions in welded AZ31B Mg alloy. The strength of the welded joint region was influenced by the grain size and has more than 90%, compared to that of ASTM standard specification.