• Title/Summary/Keyword: joint element

Search Result 1,279, Processing Time 0.031 seconds

Stress Distribution on Construction Joint of Prestressed Concrete bridge Members with Tendon Couplers (텐던커플러를 사용한 프리스트레스트 콘크리트 교량부재의 이음부 응력분포 특성)

  • 오병환;채성태;김병석;이만섭
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Recently, prestressed concrete(PSC) bridge structures with many repetitive spans have been widely constructed using the segmental construction method in many countries. In these segmentally constructed PSC bridges, there exist many construction joints which is required coupling of tendons or overlapping of tendons to introduce continuous prestress through several spans of bridges. The purpose of this paper is to investigate in detail the complicated stress distributions around the tendon coupled joints in prestressed concrete girders. To this end, a comprehensive experimental program has been set up and a series of specimens have been tested to identify the effects of tendon coupling. The present study indicates that the longitudinal and transverse stress distributions of PSC girders with tendon couplers are quite different from those of PSC girders without tendon couplers. It is seen that the longitudinal compressive stresses introduced by prestressing are greatly reduced around coupled joints according to tendon coupling ratios. The large reduction of compressive stresses around the coupled joints may cause deleterious cracking problems in PSC girder bridges due to tensile stresses arising from live loads, shrinkage and temperature effects. The analysis results by finite element method correlate very well with test results observed complex strain distributions of tendon coupled members. It is expected that the results of this paper will provide a good basis for realistic design guideline around tendon coupled joints in PSC girder bridges.

Mechanical Reliability Evaluation on Solder Joint of CCB for Compact Advanced Satellite (Sherlock을 활용한 차세대 중형위성용 CCB 솔더 접합부의 기계적 신뢰성 평가)

  • Jeon, Young-Hyeon;Kim, Hyun-Soo;Lim, In-Ok;Kim, Youngsun;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.498-507
    • /
    • 2017
  • Electronic equipments comprised of high density components with various packaging types have been recently applied to a satellite. Therefore, to guarantee high reliability of electrical equipment, a design approach, which can reduce the development period and cost through an early diagnosis in potential risks of failure, should be established. In the previous research, the reliability assesment of the electronic equipments have based on Steinberg's fatigue failure theory. However, this theory was not enough for further investigation of life prediction and reliability of the electronic equipments comprised of various sizes and packaging types due to its theoretical limitations and analysis results sensitivity with regard to different modeling technic. In that case, if detailed finite element model is established, aforementioned problems can be readily solved. However, this approach might arise disadvantage of spending much time. In this paper, to establish strategy for high reliability design of electronic equipment, we performed mechanical reliability evaluation of CCB (Camera Controller Box) at qualification level based on the approach using Sherlock unlike design techniques applied to existing business.

Numerical Study on the Behavior of Fully Grouted Rock Bolts with Different Boundary Conditions (경계조건의 변화에 따른 전면접착형 록볼트 거동의 수치해석적 연구)

  • Lee, Youn-Kyou;Song, Won-Kyong;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.267-276
    • /
    • 2010
  • In modern rock engineering practice, fully grouted rock bolting is actively employed as a major supporting system, so that understanding the behavior of fully grouted rock bolts is essential for the precise design of rock bolting. Despite its importance, the supporting mechanism of rock bolts has not been fully understood yet. Since most of existing analytical models for rock bolts were developed by drastically simplifying their boundary conditions, they are not suitable for the bolts of in-situ condition. In this study, 3-D elastic FE analysis of fully grouted rock bolts has been conducted to provide insight into the supporting mechanism of the bolt. The distribution of shear and axial stresses along the bolt are investigated with the consideration of different boundary conditions including three different displacement boundary conditions at the bolt head, the presence of intersecting rock joints, and the variation of elastic modulus of adjacent rock. The numerical result reveals that installation of the faceplate at the bolt head plays an important role in mobilizing the supporting action and enhancing the supporting capabilities of the fully grouted rock bolts.

Numerical Analysis of Groundwater Flow through Fractured Rock Mass by Tunneling in a Mountainous Area (산악 지역 내 터널 굴착 시 단열 암반 내 지하수 유동 분석)

  • Kim, Hyoung-Soo;Lee, Ju-Hyun;Ahn, Ju-Hee;Ahn, Gyu-Cheon;Yoon, Woon-Sang
    • Tunnel and Underground Space
    • /
    • v.16 no.4 s.63
    • /
    • pp.281-287
    • /
    • 2006
  • Intake of groundwater by tunneling in a mountainous area mostly results from groundwater flow through fractured parts of total rock mass. For reasonable analysis of this phenomenon the representative joint groups 1, 2, and 3 have been selected by previous investigations, geological/geophysical field tests and boring works. Three dimensional fractures were generated by the FracMan and MAFIC which is a three dimensional finite element model has been used to analyse a groundwater flow through fractured media. Monte Carlo simulation was applied to reduce the uncertainty of this study. The numerical results showed that the average and deviation of amounts of groundwater intaked into tunnel per unit length were $5.40{\times}10^{-1}$ and $3.04{\times}10^{-1}m^3/min/km$. It is concluded that tunnel would be stable on impact of groundwater environment by tunneling because of the lower value than $2.00{\sim}3.00m^3/min/km$ as previous and present standard on the application of tunnel construction.

Dynamic Response Analysis for Upper Structure of 5MW Offshore Wind Turbine System based on Multi-Body Dynamics Simulation (다물체 동역학 시뮬레이션 기반 5MW급 해상풍력발전시스템의 상부구조물에 대한 동적 응답 해석)

  • Lee, Kangsu;Im, Jongsoon;Lee, Jangyong;Song, Chang Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.239-247
    • /
    • 2013
  • Recently renewable energy such as offshore wind energy takes a higher interest due to the depletion of fossil fuel and the environmental pollution. This paper deals with multi-body dynamics (MBD) analysis technique for offshore wind turbine system considering aerodynamic loads and Thevenin equation used for determination of electric generator torque. Dynamic responses of 5MW offshore wind turbine system are evaluated via the MBD analysis, and the system is the horizontal axis wind turbine (HAWT) which generates electricity from the three blades horizontally installed at upwind direction. The aerodynamic loads acting on the blades are computed by AeroDyn code, which is capable of accommodating a generalized dynamic wake using blade element momentum (BEM) theory. In order that the characteristics of dynamic loads and torques on the main joint parts of offshore wind turbine system are simulated similarly such an actual system, flexible body modeling including the actual structural properties are applied for both blade and tower in the multi-body dynamics model.

Effects of Screw Configuration on Biomechanical Stability during Extra-articular Complex Fracture Fixation of the Distal Femur Treated with Locking Compression Plate (잠김 금속판(LCP-DF)을 이용한 대퇴골 원위부의 관절외 복합골절 치료시 나사못 배열에 따른 생체역학적 안정성 분석)

  • Kwon, Gyeong-Je;Jo, Myoung-Lae;Oh, Jong-Keon;Lee, Sung-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.3
    • /
    • pp.199-209
    • /
    • 2010
  • The locking compression plates-distal femur(LCP-DF) are being widely used for surgical management of the extra-articular complex fractures of the distal femur. They feature locking mechanism between the screws and the screw holes of the plate to provide stronger fixation force with less number of screws than conventional compression bone plate. However, their biomechanical efficacies are not fully understood, especially regarding the number of the screws inserted and their optimal configurations. In this study, we investigated effects of various screw configurations in the shaft and the condylar regions of the femur in relation to structural stability of LCP-DF system. For this purpose, a baseline 3-D finite element (FE) model of the femur was constructed from CT-scan images of a normal healthy male and was validated. The extra-articular complex fracture of the distal femur was made with a 4-cm defect. Surgical reduction with LCP-DF and bone screws were added laterally. To simulate various cases of post-op screw configurations, screws were inserted in the shaft (3~5 screws) and the condylar (4~6 screws) regions. Particular attention was paid at the shaft region where screws were inserted either in clustered or evenly-spaced fashion. Tied-contact conditions were assigned at the bone screws-plate whereas general contact condition was assumed at the interfaces between LCP-DF and bone screws. Axial compressive load of 1,610N(2.3 BW) was applied on the femoral head to reflect joint reaction force. An average of 5% increase in stiffness was found with increase in screw numbers (from 4 to 6) in the condylar region, as compared to negligible increase (less than 1%) at the shaft regardless of the number of screws inserted or its distribution, whether clustered or evenly-spaced. At the condylar region, screw insertion at the holes near the fracture interface and posterior locations contributed greater increase in stiffness (9~13%) than any other locations. Our results suggested that the screw insertion at the condylar region can be more effective than at the shaft during surgical treatment of fracture of the distal femur with LCP-DF. In addition, screw insertion at the holes close to the fracture interface should be accompanied to ensure better fracture healing.

An Empirical Study on the Establishment of a Korean Co-Prosperity Model (한국형 동반성장 모델구축에 관한 실증 연구: 포스코와 투자관련 중소기업과의 구축 사례를 중심으로)

  • Yun, Jeong-Keun;Lee, Hee-Je;Ryu, Mi-Jin;Lim, Jeong-Min;Seo, Won-Young
    • Journal of Distribution Science
    • /
    • v.11 no.12
    • /
    • pp.13-23
    • /
    • 2013
  • Purpose - There is a dominant opinion that medium and small enterprises in the Korean economy have not developed qualitatively but only towards quantitative growth and, therefore, the unbalanced structure between large enterprises and those that are medium and small has worsened. In particular, this rapid industrialization causes after-effects such as polarization as well as anti-business sentiment, the collapse of the middle class, and hostility against the establishment. The consensus contends that it is difficult for Korea to be an advanced nation without resolving these problems. This paper attempts to suggest a co-prosperity model by limiting the focus to business relations with medium and small manufacturers (with regard to investment among the various co-prosperity institutions of POSCO). These co-prosperity institutions have been established in POSCO; however, it is thought that the development of a co-prosperity model regarding investment in medium and small manufacturers will help many needy investment manufacturers. Research design, data, and methodology - This study analyzes research on the co-prosperity model, using it to examine Korean cases and foreign cases. The co-prosperity model has been continuously extended but is determined to be seriously insufficient. The purpose of this study is to develop the Korean co-prosperity model by reinterpreting it in various aspects. In order to develop the Korean co-prosperity model, this study suggests the case of the establishment of the co-prosperity model by POSCO with medium and small manufacturers with regard to investment. This model is expected to be presented to many enterprises as the future co-prosperity model. Results - To date, analysis of the co-prosperity model itself and the co-prosperity model through the case of POSCO have been suggested. As empirical studies on co-prosperity in Korea are not sufficient, successful models of co-prosperity should be developed in various aspects in future. It is expected that through this study, medium and small manufacturers would have an opportunity to find various growth engines by actively using the cooperation platform and establishing optimized competitiveness of steel material through a steel business model. The ecosystem of enterprises may evolve and be healthier by making more joint products through productive business relationships between large enterprises and those that are medium and small. From the enterprises' ecosystem viewpoint, cooperation between such businesses rather than one-way support is identified as an essential element for the security of inter-competitiveness. Conclusions - Infrastructure should be established to form a dynamic industry ecosystem not by transient efforts in co-prosperity, but by an entire culture of co-prosperity across industries. In this respect, the leading role of public institutions needs to be intensified initially. In addition, the effects of co-prosperity should be extended to blind spots of policies such as third party companies and regions. A precise co-prosperity monitoring system should be established to continuously conduct and extend these efforts.

Numerical Analysis on the Structure Behavior of the Connected Long-span Beam during Excavation in Narrow Streets (도로 폭이 좁은 굴착공사에서 연결부가 적용되는 장지간 주형의 수치해석적 거동 평가)

  • Choi, Kwang-Sou;Ha, Sang-Bong;Lee, Hwan-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.263-270
    • /
    • 2020
  • This study evaluates the structural behavior of connected long-span beams applied for excavation in urban areas with a narrow street. Generally, the reliability of the connection is reduced owing to the defect of the upper flange in the connection. An improved connection part was developed to complement the defects in the connected long-span beam. A finite element analysis based on a commercial program, ABAQUS, was employed to evaluate the behavior of the improved connection part. A numerical analysis model was proposed to analyze the high-strength bolt connection and the composite behavior of steel and concrete applied to the improved connection. The suitability of the proposed numerical analysis was verified by comparing the experimental and numerical analysis results of the references. Using the proposed numerical analysis method, the improved and general connections were analyzed and compared with each other. The stress distribution and elastic-plastic behavior of the long-span beam were analyzed numerically. The analysis confirmed that 25% of the compressive stress was improved, resulting in the improvement of structural safety and performance.

Evaluation of Fracture Behavior of Adhesive Layer in Fiber Metal Laminates using Cohesive Zone Models (응집영역모델을 이용한 섬유금속적층판 접착층의 모드 I, II 파괴 거동 물성평가)

  • Lee, Byoung-Eon;Park, Eu-Tteum;Ko, Dae-Cheol;Kang, Beom-Soo;Song, Woo-Jin
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.45-52
    • /
    • 2016
  • An understanding of the failure mechanisms of the adhesive layer is decisive in interpreting the performance of a particular adhesive joint because the delamination is one of the most common failure modes of the laminated composites such as the fiber metal laminates. The interface between different materials, which is the case between the metal and the composite layers in this study, can be loaded through a combination of fracture modes. All loads can be decomposed into peel stresses, perpendicular to the interface, and two in-plane shear stresses, leading to three basic fracture mode I, II and III. To determine the load causing the delamination growth, the energy release rate should be identified in corresponding criterion involving the critical energy release rate ($G_C$) of the material. The critical energy release rate based on these three modes will be $G_{IC}$, $G_{IIC}$ and $G_{IIIC}$. In this study, to evaluate the fracture behaviors in the fracture mode I and II of the adhesive layer in fiber metal laminates, the double cantilever beam and the end-notched flexure tests were performed using the reference adhesive joints. Furthermore, it is confirmed that the experimental results of the adhesive fracture toughness can be applied by the comparison with the finite element analysis using cohesive zone model.

Acceleration Test Method for Failure Prediction of the End Cap Contact Region of Sodium Cooled Fast Reactor Fuel Rod (소듐냉각 고속로 연료봉단의 접촉부 손상예측을 위한 가속시험 방법)

  • Kim, Hyung-Kyu;Lee, Young-Ho;Lee, Hyun-Seung;Lee, Kang-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.375-380
    • /
    • 2017
  • This paper reports the results of an acceleration test to predict the contact-induced failure that could occur at the cylinder-to-hole joint for the fuel rod of a sodium-cooled fast reactor (SFR). To incorporate the fuel life of the SFR currently under development at KAERI (around 35,000 h), the acceleration test method of reliability engineering was adopted in this work. A finite element method was used to evaluate the flow-induced vibration frequency and amplitude for the test parameter values. Five specimens were tested. The failure criterion during the life of the SFR fuel was applied. The S-N curve of the HT-9, the material of concern, was used to obtain the acceleration factor. As a result, a test time of 16.5 h was obtained for each specimen. It was concluded that the $B_{0.004}$ life would be guaranteed for the SFR fuel rods with 99% confidence if no failure was observed at any of the contact surfaces of the five specimens.