• Title/Summary/Keyword: joint angle & moment

Search Result 96, Processing Time 0.028 seconds

Structural Behavior Evaluation of NRC Beam-Column Connections (NRC 보-기둥 접합부의 구조적 거동 평가)

  • Jeon, Ji-Hwan;Lee, Sang-Yun;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • In this study, details of NRC beam-column connections were developed in which beam and columns pre-assembled in factories using steel angles were bolted on site. The developed joint details are NRC-J type and NRC-JD type. NRC-J type is a method of tensile joining with TS bolts to the side and lower surfaces of the side plate of the NRC column and the end plate of the NRC beam. NRC-JD type has a rigid joint with high-strength bolts between the NRC beam and the side of the NRC column for shear, and with lap splices of reinforcing bar penetrating the joint and the beam main reinforcement for bending. For the seismic performance evaluation of the joint, three specimens were tested: an NRC-J specimen and NRC-JD specimen with NRC beam-column joint details, and an RC-J specimen with RC beam-column joint detail. As a result of the repeated lateral load test, the final failure mode of all specimens was the bending fracture of the beam at the beam-column interface. Compared to the RC-J specimen, the maximum strength of the specimen by the positive force was 10.1% and 29.6% higher in the NRC-J specimen and the NRC-JD specimen, respectively. Both NRC joint details were evaluated to secure ductility of 0.03 rad or more, the minimum total inter-story displacement angle required for the composite intermediate moment frame according to the KDS standard (KDS 41 31 00). At the slope by relative storey displacemet of 5.7%, the NRC-J specimen and the NRC-JD specimen had about 34.8% and 61.1% greater cumulative energy dissipation capacity than the RC specimen. The experimental strength of the NRC beam-column connection was evaluated to be 30% to 53% greater than the theoretical strength according to the KDS standard formula, and the standard formula evaluated the joint performance as a safety side.

Relationship between Neurocognitive Ability and Risk Factors of Anterior Cruciate Ligament Injuries in Female Athletes (여성선수의 신경인지 능력과 전방십자인대 손상 위험요인과의 관계)

  • Ha, Sung-He;Park, Sang-Kyoon
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.8
    • /
    • pp.301-309
    • /
    • 2018
  • The aim of this study was to investigate the relationship between the neurocognitive ability and the risk factors of non-contact anterior cruciate ligament injuries during landing in female recreational athletes. Thirty-two female athletes participated in computerized neurocognition test and motion analysis for drop vertical jump. Pearson's linear correlation analysis was performed to analyze the relationship between the raw scores of neurocognition test and biomechanical variables including 3D joint angle, moment, power, vertical ground reaction force, loading rate, and support time. There were correlations between the scores of neurocognition test and biomechanical variables as high the neurocognition score, it also increase landing strategies were used to maintain posture of the lower extremity. Therefore, the neurocognitive test might be used as a good screening method to detect the risk factors before injury.

Study on Measuring Mechanical Properties of Sport Shoes Using an Industrial Robot (산업용 로봇을 이용한 스포츠화의 운동역학특성 측정에 관한 연구)

  • Lee, Jong-Nyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3833-3838
    • /
    • 2009
  • This paper introduces a measurement system for mechanical properties of sport shoes using an industrial robot. The robot system used in this paper is a commercial Puma type robot system(FARA AT2 made by SAMSUNG Electronics) with 6 joints and the end-effector is modified to produce a human walking motion. After analyzing human walking with a high speed video camera, each joint angle of the robot system is extracted to be used in the robot system. By using this system, ground impact forces were measured during stepping motion with 3 different shoe specimens made of 3 different hardness outsoles, respectively. As other mechanical properties, both bending moments to bend the toe part of the same specimen shoes and pronation quantities during walking motion were measured as well. In the impact test with the same depth of deformation under the ground level, the effect of the outsole hardness was clearly appeared such that the harder outsole produces the higher ground reaction force. The bending test and the pronation test also show proportional increments in the bending stiffness and the moment Mx according to the outsole hardness. Throughout such experiments, the robot system has produced consistent results so that the system could be used in obtaining valuable informations for a shoe designing process.

Biomechanical Comparative Analysis of Two Goal-kick Motion in Soccer (두 가지 축구 골킥 동작의 운동역학적 비교 분석)

  • Jin, Young-Wan;Shin, Je-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.29-44
    • /
    • 2005
  • The purpose of this study is to reveal the effects of two different kicks, the drop kick and the punt kick, into the kicking motion, through the kinetic comparative analysis of the kicking motion, which is conducted when one kicks a soccer goal. To grasp kinetic changing factors, which is performed by individual's each body segment, I connected kicking motions, which were analyzed by a two dimension co-ordination, into the personal computer to concrete the digits of it and smoothed by 10Hz. Using the smoothed data, I found a needed kinematical data by inputting an analytical program into the computer. The result of comparative analysis of two kicking motions can be summarized as below. 1. There was not a big difference between the time of the loading phase and the time of the swing phase, which can affect the exact impact and the angle of balls aviation direction. 2. The two kicks were not affected the timing and the velocity of the kicking leg's segment. 3. In the goal kick motion, the maximum velocity timing of the kicking leg's lower segment showed the following orders: the thigh(-0.06sec), the lower leg(-0.05sec), the foot(-0.018sec) in the drop kick, and the thigh(-0.06sec), the lower leg(-0.05sec), the foot(-0.015sec) in the punt kick. It showed that whipping motion increases the velocity of the foot at the time of impact. 4. At the time of impact, there was not a significant difference in the supporting leg's knee and ankle. When one does the punt kick, the subject spreads out his hip joint more at the time of impact. 5. When the impact performed, kicking leg's every segment was similar. Because the height of the ball is higher in the punt kick than in the drop kick, the subject has to stretch the knees more when he kicks a ball, so there is a significant affect on the angle and the distance of the ball's flying. 6. When one performs the drop kick, the stride is 0.02m shorter than the punt kick, and the ratio of height of the drop kick is 0.05 smaller than the punt kick. This difference greatly affects the center of the ball, the supporting leg's location, and the location of the center of gravity with the center of the ball at the time of impact. 7. Right before the moment of the impact, the center of gravity was located from the center of the ball, the height of the drop kick was 0.67m ratio of height was 0.37, and the height of the punt kick was 0.65m ratio of height was 0.36. The drop kick was located more to the back 0.21m ratio of height was 0.12, the punt kick was located more to the back 0.28m ratio of height was 0.16. 8. There was not a significant difference in the absolute angle of incidence and the maximum distance, but the absolute velocity of incidence showed a significant difference. This difference is caused from that whether players have the time to perform of not; the drop kick is used when the players have time to perform, and punt kick is used when the players launch a shifting attack. 9. The surface reaction force of the supporting leg had some relation with the approaching angle. Vertical reaction force (Fz) showed some differences in the two movements(p<0.05). The maximum force of the right and left surface reaction force (Fx) didn't have much differences (p<0.05), but it showed the tendency that the maximum force occurs before the peak force of the front and back surface (Fy) occurs.

The Effect of High-Heeled Shoes With Total Contact Inserts in the Gait Characteristics of Young Female Adults During Lower Extremity Muscle Fatigue (하지 근육의 피로상태 동안 높은 굽 신발에 적용한 전면접촉인솔이 젊은 여성의 보행 특성에 미치는 영향)

  • Ko, Eun-Hye;Choi, Houng-Sik;Kim, Tack-Hoon;Cynn, Heon-Seock;Kwon, Oh-Yun;Choi, Kyu-Han
    • Physical Therapy Korea
    • /
    • v.15 no.1
    • /
    • pp.38-45
    • /
    • 2008
  • This study investigated gait characteristics, kinematics, and kinetics in the lower extremities between two different shoe conditions (high heeled shoes (7 cm), and high heeled shoes with a total contact insert (TCI)) after lower extremity muscle fatigue. Although TCI shave been applied in high heeled shoes to increase comfort and to decrease foot pressure, no study has attempted to identify the effects of TCI in fatigue conditions. The purpose of this study was to determine the effects of walking in high heeled shoes with TCI after lower extremity muscle fatigue was induced. This study was carried out in a motion analysis laboratory at Hanseo University. A volunteer sample of 14 healthy female subjects participated. All in fatigue conditions, the subjects were divided into two groups. The muscle fatigue was induced by 40 voluntary dorsi- and plantar-flexion exercises and 40 heel-rise exercises of the dominant foot. Surface electromyography was used to confirm the localized muscle fatigue using power spectral analysis of three muscles (tibialis anterior, gastrocnemius medialis and lateralis). The results were as follows: (1) In muscle fatigue conditions, the use of TCI decreased the peak flexion angle of the hip joint significantly in the early stance phase (p<.05) and increased the peak hip flexion moment in the terminal stance phase (p<.05). (2) In muscle fatigue conditions, the application of TCI also increased peak hip power generation in the early stance phase and peak hip power absorption in the terminal stance phase (p<.05). (3) In muscle fatigue conditions, the use of TCI reduced the impact force significantly and increased the secondary peak vertical GRF. These findings suggest that the TCI may provide beneficial effects when muscle fatigue occurs for a high heeled shoe gait. Future research employing the patient population and various types of TCI materials are required to clarify the effects of TCI.

  • PDF

Functional analysis of isolated posterior cruciate ligament deficient subjects (후방 십자 인대 단독 손상 환자의 기능적 분석)

  • Kim Jin Goo
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.3 no.1
    • /
    • pp.66-72
    • /
    • 2004
  • Purpose: To evaluate the compensatory mechanism in vivo and develop the treatment guide by performing the comprehensive functional tests of the posterior cruciate ligament (PCL) deficient subjects. Material and Methods: 10 PCL deficient subjects and 10 healthy control group were evaluated. Performed functional tests were range of motion, posterior drawer test, Telos, 30$^{\circ}$ flexion wt-bearing view, KT-1000 arthrometer, gait analysis, EMG test and isokinetic tests. Results: Physical, KT-1000, Telos posterior tests showed significant differences, but 300 full weight bearing lateral view, muscle strength test revealed no difference between two groups. Less knee flexion at initial contact and reduced maximum valgus moment were observed in PCL deficient group. In vertical drop landing, PCL group had increased plantar flexion angle at initial contact. Conclusion: Compensatory mechanisms such as reduced unstable components and absorbing the maximal load of the joint were occurred after PCL insufficiency, which result in good clinical and functional outcomes. Further investigations would be needed to understand the functional adaptations of PCL deficient subjects.

  • PDF