• Title/Summary/Keyword: jet stream

Search Result 186, Processing Time 0.025 seconds

A Simple Calculational Method by using Modified Von Mises Transformation applied to the Coaxial Turbulent Jet Mixing (유동함수를 이용한 난류제트혼합유동 계산에 관한 연구)

  • Choi Dong-Whan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.97-104
    • /
    • 2005
  • A simple but efficient grid generation technique by using the modified compressible form of stream function has been formulated. Transformation of a physical plane to a streamline plane, the Von Mises Transformation, has been widely used to solve the differential equations governing flow phenomena, however, limitation arises in low velocity region of boundary layer, mixing layer and wake region where the relatively large grid spacing is inevitable. Modified Von Mises Transformation with simple mathematical adjustment for the stream function is suggested and applied to solve the confined coaxial turbulent jet mixing with simple $\kappa-\epsilon$ turbulence model. Comparison with several experimental data of axial mean velocity, turbulent kinetic energy, and Reynolds shear stress distribution shows quite good agreement in the mixing layer except in the centerline where the turbulent kinetic energy distributions were somewhat under estimated. This formulation is strongly suggested to be utilized specially for free turbulent mixing layers in axisymmetric flow conditions such as the investigation of mixing behavior, jet noise production and reduction for Turbofan engines.

Control of the Supersonic Jet Noise Using a Wire Device (와이어 장치를 이용한 초음속 제트소음의 제어)

  • Kweon Yong Hun;Lim Chae Min;Aoki Toshiyuki;Kim Heuy Dong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.64-67
    • /
    • 2004
  • The present study describes an experimental work to reduce supersonic jet noise using a control wire device that is placed into the supersonic jet stream. The jet pressure ratio is varied to obtain the supersonic jets which are operated in a wide range of over-expanded to moderately under-expanded conditions. The wire device is composed of long cylinders with a very small diameter. X-type wire device is applied to control the supersonic jet noise, and its location is varied to investigate the effect of the control wire device on supersonic jet noise. A high-quality Schlieren optical system is used to visualize the flow field of supersonic jet with and without the control wire device. Acoustic measurement is performed to obtain the overall sound pressure level and noise spectra. The results obtained show that the present wire device destroys the shock-cell structures, reduces the shock strength, and consequently leading to a substantial suppression of supersonic jet noise.

  • PDF

Study on the Prediction of Turning Point of Typhoon Tracks using COMS Water Vapor Images (천리안 수증기 영상을 이용한 태풍진로의 전향위치 예측 연구)

  • Kim, Jong-Seok;Yoon, Ill-Hee
    • Journal of the Korean earth science society
    • /
    • v.35 no.3
    • /
    • pp.168-179
    • /
    • 2014
  • The purpose of this study focuses on the prediction time and location of turning-point of typhoon tracks using the water vapor images of Communication, Ocean and Meteorological Satellite (COMS) which has a very short observation interval. It targets a more accurate prediction of turning-point of typhoon tracks through the relationship between dry slot and northern/southern oscillations of jet stream. Jet stream moves by the position of jet streak and the ${\upsilon}$-component velocity of geostrophic wind. If the ${\upsilon}$-component of geostrophic wind gets stronger toward south, jet stream develops into a circular jet. In that condition, dry slot in satellite water vapor imagery extends toward south, and typhoon track turns as the distance of curved moisture band (CMB) gets narrowed down. If the interval of CMB is below $15^{\circ}$ of latitude, the typhoon track is turning toward north or northeast within 24 hours. As a result, typhoon track showed that when dry slot position was located less than $32^{\circ}N$, typhoon turned its track at $20-23^{\circ}N$ ($1^{th}$ Kong-Rey 2007 and $17^{th}$ Jelawt at 2012), and when in $35^{\circ}N$ above, it turned at $27^{\circ}N$ ($4^{th}$ Man-yi 2007).

Performance analysis of a horn-type rudder implementing the Coanda effect

  • Seo, Dae-Won;Oh, Jungkeun;Jang, Jinho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.2
    • /
    • pp.177-184
    • /
    • 2017
  • The Coanda effect is the phenomenon of a fluid jet to stay attached to a curved surface; when a jet stream is applied tangentially to a convex surface, lift force is generated by increase in the circulation. The Coanda effect has great potential to be applied practically applied to marine hydrodynamics where various lifting surfaces are being widely used to control the behavior of ships and offshore structures. In the present study, Numerical simulations and corresponding experiments were performed to ascertain the applicability of the Coanda effect to a horn-type rudder. It was found that the Coanda jet increases the lift coefficient of the rudder by as much as 52% at a jet momentum coefficient of 0.1 and rudder angle of $10^{\circ}$.

An Investigation of Roughness Effects on 2-Dimensional Wall Attaching Offset Jet Flow (조도가 2차원 벽부착 제트유동에 미치는 영향에 관한 연구)

  • 윤순현;김대성;박승철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.219-230
    • /
    • 1995
  • The flow characteristics of a two-dimensional offset jet issuing parallel to a rough wall is experimentally investigated by using a split film probe with the modified Stock's calibration method. The mean velocity and turbulent stresses profiles in the up and down-stream locations of the wall-attachment regions are measured and compared with those of the smooth wall attaching offset jet cases. It is found that the wall-attachment region on the rough wall is wider than on the smooth wall for the same offset height and the jet speed. The position of the maximum velocity point is farther away from the wall than that for the smooth wall case because of the thick wall boundary layer established by the surface roughness. It is concluded that the roughness of the wall accelerates the relaxation process to a redeveloped plane wall jet and produces a quite different turbulent diffusion behavior especially near the wall from comparing with the smooth plane wall jet turbulence.

PIV Measurements of Flow and Turbulence Characteristics of Round Jet in Crossflow (횡단류 제트의 유동 및 난류특성치에 대한 PIV 측정)

  • Kim, Kyung-Chun;Kim, Sang-Ki;Yoon, Sang-Youl
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.382-389
    • /
    • 2000
  • The instantaneous and ensemble averaged flow characteristics of a round jet issuing normally into a crossflow was studied using a flow visualization technique and Particle Image Velocimetry measurements. Experiments were performed at a jet-to-crossflow velocity ratio, 3.3, and two Reynolds numbers, 1050 and 2100, based on crossflow velocity and jet diameter. Instantaneous laser tomographic images of the vertical center plane of the crossflow jet showed that there exist very different natures in the flow structures of the near field jet even though the velocity ratio is the same. It was found that the shear layer becomes much thicker when the Reynolds number is 2100 due to the strong entrainment of the inviscid fluid by turbulent interaction between the jet and crossflow. The mean and second order statistics were calculated by ensemble averaging over 1000 realizations of instantaneous velocity fields. The detail characteristics of mean flow field, stream wise and vertical r.m.s. velocity fluctuations, and Reynolds shear stress distributions were presented. The new PlV results were compared with those from previous experimental and LES studies.

Spray Characteristics of a Pulsed Liquid Jet into a Cross-flow of Air (아음속 횡단 유동장으로 펄스 분사된 액체 제트의 분무특성)

  • Lee, In-Chul;Byun, Young-Wu;Koo, Ja-Ye
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.61-64
    • /
    • 2008
  • The present study of these experiments are close examination of spray characteristics that are continuous liquid jet and modulated pressure pulse liquid jet. The experiments were conducted using water, over a range of cross-flow velocities from 42${\sim}$136 m/s, with injection frequencies of 35.7${\sim}$166.2 Hz. Between continuous cross-flow jet and pressure pulsed cross-flow jet for characteristics of penetration, breakup point, spray angle and macro spray shape are investigated experimentally. In cross-flow field, main parameter of liquid jet for breakup was cross-flow stream rather than pressure pulse frequency. As oscillation of the periodic pressure that could make liquid jet moved up and down, the mixing efficiency was increased. Also, a bulk of liquid jet puff was detected at upper field of liquid surface. So, this phenomenon has a good advantage of mixing spray from concentration of center area to outer area. Because of pressure pulsation frequency, an inclination of SMD for the structured layer was evanescent. Cross-sectional characteristics of SMD at downstream area were non-structured distributions. Then cross-sectional characteristics of SMD size were about same tendency over a range that is effect of spray mixing. The tendency of volume flux value for various frequency of pressure pulse was same distribution. And volume flux was decreased when the frequency of pressure pulse increase.

  • PDF

Spray Characteristics of Modulated Liquid Jet Injected into a Subsonic Crossflow (주파수 변조 분사가 횡단 유동장의 분무 특성에 미치는 영향)

  • Lee, I.C.;Kim, J.H.;Koo, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.14 no.2
    • /
    • pp.59-64
    • /
    • 2009
  • These experiments are close examination of spray characteristics that are continuous liquid jet and modulated liquid jet. The experiments were conducted using water, over a range of crossflow velocities from $42{\sim}l36\;m/s$, with modulation frequencies of $35.7{\sim}166.2\;Hz$. Between continuous crossflow jet and modulated cross-flow jet of penetration, breakup point, spray angle and macro spray shape are experimentally investigated with image analysis. In cross-flow field, main parameter of liquid jet for breakup was cross-flow stream rather than modulation effect. As oscillation of the periodic pressure that could make liquid jet moved up and down, the mixing efficiency was increased. Also, a bulk of liquid jet puff was detected at upper field of liquid surface. So, this phenomenon has a good advantage of mixing spray from concentration of center area to outer area. Because of modulation frequency, SMD inclination of the structured layer was evanescent. Cross-sectional characteristics of SMD at downstream area were non-structured distributions. Then cross-sectional characteristics of SMD size were about same tendency over a range that is effect of spray mixing. The tendency of volume flux value for various modulation frequency was same distribution. And volume flux was decreased when the modulation frequency increase.

  • PDF

Effect of Oxygen Enriched Air on the Combustion Characteristics in a Coaxial Non-Premixed Jet (II) - Flame Structure and Temperature Distribution - (산소부화공기가 동축 비예혼합 제트의 연소특성에 미치는 영향 (II) - 화염의 구조와 온도분포 -)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Jang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.223-229
    • /
    • 2004
  • Combustion using oxygen enriched air is known as a technology which can increase thermal efficiency due to increase of the flame temperature. Flame shapes, schlieren photos, OH radical chemiluminescence and local flame temperature were examined as a function of OEC(Oxygen Enriched Concentration) in a coaxial non-premixed jet. With increase of OEC, flame length and width decreased, but its brightness increased significantly, and the size of vortices in the flame also increased. Especially, the reaction around the flame surface became active. The strong OH intensity appeared to be made and moved from middle stream to upper one with increase of OEC, which shows combustion reaction in the upper stream becomes more dominant In addition, the temperature distributions of the flames showed similar tendency with OH radical intensities. A flame with high temperature and strong stability was obtained with increasing OEC of the coflow.

The Whole Region Pressure Measurement of Cavity Downstream using PSP Technique (PSP를 이용한 Cavity 후류의 전역적 압력분포 측정)

  • Kim, Ki-Su;Jeon, Young-Jin;Seo, Hyung-Seok;Byun, Yung-Hwan;Lee, Jae-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.317-321
    • /
    • 2007
  • PSP (Pressure Sensitive Paint) technique can measure continuous pressure field by analyzing the oxygen quantity using optical method. The surface pressure of down stream after the sonic jet that injected transversely into the supersonic freestream was measured by PSP technique. Moreover the effect of various rectangular shaped cavities in front of the jet was measured by PSP technique. A comparison of the PSP results with conventional pressure tap and CFD indicates good agreement. The result shows that the cavity affects the pressure distribution in the rear of the jet injection.

  • PDF