• Title/Summary/Keyword: jet pressure

Search Result 1,025, Processing Time 0.029 seconds

Microplasma-Jet Device for Bio-medical Application (바이오-메디컬 응용을 위한 마이크로 플라즈마 분사 소자)

  • Kim, Kang-Il;Hong, Yong-Cheol;Kim, Guen-Young;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2474-2479
    • /
    • 2009
  • This paper presents an atmospheric microplasma-jet device for bio~medical application. The microplasma-jet device consists of four components; a thin Ni anode, porous alumina insulator, a stainless steel cathode and an aluminum case. The anode has 8 holes, and hole diameter and depth are $200 {\mu}m$ and $60 {\mu}m$, respectively. The discharge test was performed in atmospheric pressure using nitrogen gas and AC voltage at the optimum gas flow rate of 4 Vmin. The plasma-jet is ejected stably for the input voltage ranging from 5.5 to $9.5 kV_{p-p}$. The plasma becomes dense as the input voltage increases, which was verified by the hydrophilicity change of PMMA surface treated by the plasma. The temperature increasement of the aluminum film exposed to plasma-jet illustrates that the micro plasma-jet device is feasible for bio-medical application.

Effect of Nozzle Lip Thickness on the Characteristics of Supersonic Jet Noise (노즐립 두께가 초음속 제트의 소음특성에 미치는 영향)

  • Kweon, Yong-Hun;Aoki, Toshiyuki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.520-525
    • /
    • 2003
  • Supersonic jet issuing from a nozzle invariably cause high-frequency noises. These consist of three principal components ; the turbulent mixing noise, the broadband shock-associated noise, and the screech tone. In present study, it was experimentally investigated to the effect of nozzle lip thickness on the characteristics of supersonic jet noise. The convergent-divergent nozzle of a design Mach number 2.0 was used in experiment. With three different nozzle-lip thicknesses, the jet pressure ratio was varied in the range between 2.0 and 12.0. Acoustic measurements were conducted by microphones in an anechoic room, and the major structures of the supersonic jets were visualized by a Schlieren optical system to investigate the effect of nozzle lip thickness. The measured results show that the characteristics of supersonic jet noise, such as overall sound pressure level (OASPL) and screech frequency, strongly depend upon the thickness of nozzle-lip.

  • PDF

Effect of Flow Structure Inside Nozzle on the Liquid Jet Breakup of Elliptical Nozzle (타원형 노즐의 내부유동 구조가 액주분열에 미치는 영향)

  • Ku, K.W.;Hong, J.G.
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.44-54
    • /
    • 2013
  • An experimental study was performed to investigate the liquid jet breakup of a circular nozzle and elliptical nozzles. Furthermore Numerical simulation was attempted to investigate the internal flow structure in the circular and elliptical nozzles. This study showed that the disintegration characteristics of the liquid jet of elliptical nozzles were much different from those of the circular nozzle. The liquid jet issued from the elliptical nozzles became more unstable at the same injection pressure. Surface breakup was observed at the jet issued from the elliptical nozzles with the increase of injection pressure. The disintegration of the liquid jet of elliptical nozzles was related with the internal flow structure which is revealed from the numerical simulation.

A Numerical Analysis of Flow and Beat Transfer Characteristics of a Two-Dimensional Multi-Impingement Jet(I) (이차원 다중젯트의 유동 및 열전달 특성의 수치적 해석(I) -돌출열원이 없는 경우의 유동특성-)

  • 장대철;이기명
    • Journal of Biosystems Engineering
    • /
    • v.20 no.1
    • /
    • pp.58-65
    • /
    • 1995
  • A numerical study for a two dimensional multi-jet with crossflow of the spent fluid has been carried out. Three different distributions of mass-flow rate at 5 jet exits were assumed to see their effects upon the flow characteristics, especially in the jet-flow region. For each distribution, various Reynolds numbers ranging from laminar to turbulent flows were considered. Calculations drew the following items as conclusion. 1) The development of the free jets issued from downstream jets was hindered by the crossflow formed due to jets. Consequently, the free jet was developed into the channel flow without any evident symptom of impingement jet flow characteristics 2) The crossflow induced the pressure gradient along the cross section of jet exits and the value of the pressure gradient increased as going downstream. The crossflow generated also the turbulent kinetic energy as it collied with the downstream jets. 3) The skin friction coefficient along the impingement plate was affected more by the distribution of mass flow rate at jet exits rather than by the Reynolds number. The skin friction coefficient was inversely proportional to the square root of the Reynolds number, regardless of flow regime when a fully developed flow was formed in the jet flow region. 4) The distribution of the skin friction coefficient along the impingement plate was found to be controlled by adjusting the distribution of mass flow rate at jet exits.

  • PDF

Wind pressure on a solar updraft tower in a simulated stationary thunderstorm downburst

  • Zhou, Xinping;Wang, Fang;Liu, Chi
    • Wind and Structures
    • /
    • v.15 no.4
    • /
    • pp.331-343
    • /
    • 2012
  • Thunderstorm downbursts are responsible for numerous structural failures around the world. The wind characteristics in thunderstorm downbursts containing vortex rings differ with those in 'traditional' boundary layer winds (BLW). This paper initially performs an unsteady-state simulation of the flow structure in a downburst (modelled as a impinging jet with its diameter being $D_{jet}$) using a computational fluid dynamics (CFD) method, and then analyses the pressure distribution on a solar updraft tower (SUT) in the downburst. The pressure field shows agreement with other previous studies. An additional pair of low-pressure region and high-pressure region is observed due to a second vortex ring, besides a foregoing pair caused by a primary vortex ring. The evolutions of pressure coefficients at five orientations of two representative heights of the SUT in the downburst with time are investigated. Results show that pressure distribution changes over a wide range when the vortices are close to the SUT. Furthermore, the fluctuations of external static pressure distribution for the SUT case 1 (i.e., radial distance from a location to jet center x=$D_{jet}$) with height are more intense due to the down striking of the vortex flow compared to those for the SUT case 2 (x=$2D_{jet}$). The static wind loads at heights z/H higher than 0.3 will be negligible when the vortex ring is far away from the SUT. The inverted wind load cases will occur when vortex is passing through the SUT except on the side faces. This can induce complex dynamic response of the SUT.

The Behaviour Characteristics of Reinforced Limestone Cavities by High Pressure Jet-Grouting (고압분사주입공법으로 보강된 석회암공동의 거동특성)

  • Hong, Won-Pyo;Hong, Kun-Pyo;Yea, Geu-Guwen
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.7-16
    • /
    • 2008
  • Limestone area have mostly certain geological defects such as the internal cavities due to melting and fractured zone by external pressures. Especially, in case of constructing grand bridge, the treatment of the limestone cavities area having the geological defects is inevitable. In order to reduce foundation settlement and to reinforce the ground in the limestone cavities area, high pressure jet grouting has been carried out as a countermeasure method. Despite the fact that high pressure jet grouting method has already adopted at a lot of limestone cavities area, but the amount of research and technical data on the high pressure jet grouting have not been accumulated properly so for. Therefore this paper intends to investigate the strength characteristics and deformation characteristics for reinforced limestone cavities area by high pressure jet grouting method. In addition, load carrying capacity obtained by static pile load test with load transfer measuring system is analyzed.

An Experimental Study of the Wall Temperature of the Supersonic Impinging Coaxial Jet Using an FLIR (적외선 카메라를 이용한 초음속 충돌 동축제트의 벽면 온도 측정)

  • Gwak, Jong-Ho;Kumar, V. R. Sanal;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1631-1636
    • /
    • 2004
  • The supersonic impinging jet has been extensively applied to rocket launching system, gas jet cutting control, gas turbine blade cooling, etc. In such applications, wall temperature of an object on which supersonic jet impinges is a very important factor to determine the performance and life of the device. However, wall temperature data of supersonic impinging jets are not enough to data. The present study describes an experimental work to measure the wall temperatures of a vertical flat plate on which supersonic, dual, coaxial jet impinges. An Infrared camera is employed to measure the wall temperature distribution on the impinging plate. The pressure ratio of the jet is varied to obtain the supersonic jets in the range of over-expanded to moderately under-expanded conditions at the exit of coaxial nozzle. The distance between the coaxial nozzle and the flat plate was also varied. The coaxial jet flows are visualized using a Shadow optical method. The results show that the wall temperature distribution of the impinging plate is strongly dependent on the jet pressure ratio and the distance between the nozzle and plate.

  • PDF

The Effect of Annular Slit on a Compressible Spiral Jet Flow (스파이럴 제트 유동에 미치는 환형 슬릿의 영향에 관한 연구)

  • Cho, Wee-Bun;Baek, Seung-Cheul;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2029-2034
    • /
    • 2004
  • Spiral jet is characterized by a wide region of the free vortex flow with a steep axial velocity gradient, while swirl jet is largely governed by the forced vortex flow and has a very low axial velocity at the jet axis. However, detailed generation mechanism of spiral flow components is not well understood, although the spiral jet is extensively applied in a variety of industrial field. In general, it is known that spiral jet is generated by the radial flow injection through an annular slit which is installed at the inlet of a conical convergent nozzle. The present study describes a computational work to investigate the effects of annular slit on the spiral jet. In the present computation, a finite volume scheme is used to solve three dimensional Naver-Stokes equations with RNG ${\kappa}-{\varepsilon}$ turbulent model. The annular slit width and the pressure ratio of the spiral jet are varied to obtain different spiral flows inside the conical convergent nozzle. The present computational results are compared with the previous experimental data. The results obtained obviously show that the annular slit width and the pressure ratio of the spiral jet strongly influence the characteristics of the spiral jets, such as tangential and axial velocities.

  • PDF

The Enhacned Atomization of Single Hole Nozzle by Cavitation at The Low Pressure Injection (저압 분사시 캐비테이션에 의한 단공 노즐의 미립화 향상)

  • Son, Jong-Won;Cha, Keun-Jong;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.952-957
    • /
    • 2001
  • The objectives of this investigation were to obtain an excellent spray by cavitation under the low injection pressure. When cavitation occurs in the nozzle hole, the atomization of the liquid jet enhanced considerably. In this experiments, a acrylic nozzle made the gap and installed the bypass in the nozzle hole was used to enhance the atomization of the liquid jet at the low injection pressure. The liquid flow in the nozzle hole was photographed by a transmitted light using a micro flash. The spray angle was measured macroscope images of PMAS and the Sauter mean diameter was measured PDA system. To measure the pressure of the nozzle hole, pressure transducer was used. The results of this study indicated that enhanced atomization of the liquid jet at the low injection pressure was obtained by making the gap and installing the bypass at the single hole nozzle.

  • PDF

A Study on the Comparison of Design Conditions between Booster Ejector and Air Ejector in the Steam-Jet Water-Vapour Refrigeration Cycle (증기분사냉동계의 부우스터 이젝터와 에어 이젝터의 설계조건비교에 관한 연구)

  • Lee, Chang-Sik
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.7 no.2
    • /
    • pp.73-79
    • /
    • 1978
  • This paper presents the experimental study on the design conditions of pressure between booster ejector and air ejector in the steam-jet water-vapour refrigeration system. In this experiment, the motive steam of booster ejector and ai. ejector was dry saturated from 6 ata to 8 ata and flash chamber pressure were about $10\∼540mmHg$ higher than mixing section in booster ejector. The investigation of air on the pressure of booster ejector was performed by changing the condenser pressure. The experimental results show that flash chamber vacuum and condenser pressure of steam-jet refrigeration cycle increased in accordance with the increase of motive steam Pressure. Among the several nozzle sires tested, No.4 nozzle were best in term of evaporator vacuum under the constant operating conditions of air ejector in condenser.

  • PDF