• Title/Summary/Keyword: jet flow

Search Result 1,681, Processing Time 0.026 seconds

The Risk Assessment of Tunnel Fire Through Real Scale Fire Test (실물터널 화재실험을 통한 터널화재 위험도 평가)

  • 최준석;최병일;김명배;한용식;장용재;이유환;황낙순;김필영
    • Fire Science and Engineering
    • /
    • v.16 no.3
    • /
    • pp.71-76
    • /
    • 2002
  • The real scale tunnel fire tests are carried out for the first time in domestic range to assess the extent of risk in the tunnel fire. The tunnel dimension is 465 m in length, 9.2 m in width and 6.5 m in height. Gasoline pools with 0.25 MW∼2.5 MW size and a 1500CC passenger car are used as fire sources. Six jet fans are used to change the flow velocity inside the tunnel. Temperatures at total 86 points in the tunnel are measured to find the temperature distribution and smoke behavior in the real tunnel fire. In the experiment, it is examined that the important parameters to assess the extent of risk in tunnel fire such as back layering of smoke front, descending of smoke layer and the fire size of a real passenger car.

An Experimental Study on Quantitative Interpretation of Local Convective Heat Transfer for the Fin and Tube Heat Exchanger Using Lumped Capacitance Method (Lumped Capacitance 방법을 이용한 휜-관 열교환기의 정량적 국소 대류 열전달 해석을 위한 실험적 연구)

  • Kim, Ye-Yong;Kim, Gwi-Sun;Jeong, Gyu-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.205-215
    • /
    • 2001
  • An experimental study has been performed to investigate the heat transfer characteristics of fin and tube heat exchanger. The existing transient and steady methods are very difficult to apply for the measurements of heat transfer coefficients of a thin heat transfer model. In this study the lumped capacitance method was adopted. The heat transfer coefficients were measured by using the lumped capacitance method based on the liquid crystal thermography. The method is validated through impinging jet and flat plate flow experiments. The two experiments showed that the results of the lumped capacitance method with polycarbonate model showed very good agreements with those of the transient method with acryl model. The lumped capacitance method showed similar results regardless of the thickness of polycarbonate model. The method was also applied for the heat transfer coefficient measurements of a fin and tube heat exchanger. The quantitative heat transfer coefficients of the plate fin were successfully obtained. As the frontal velocity increased, the heat transfer coefficients were increased, but the color-band shape showed similar patterns regardless of frontal velocity.

A Study on Impact of an Adjacent Structure by a Rocket Plume (유도탄 화염이 인접 구조물에 미치는 영향 연구)

  • Yang, Young-Rok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.488-494
    • /
    • 2014
  • Rocket Plumes can cause serious damage to launch vehicles and adjacent structures. This paper describes the impact of an adjacent structure by a rocket plume. Each parameter related with dynamic behavior of a missile is modeled with probabilistic distributions of variables. Flyout analyses of initial behavior of a vertically launched missile are performed using Monte-Carlo simulation and flow-motion analyses were conducted by using CFD. In this way, when a missile is fired by a ship, the impact of an adjacent structure by a rocket plume was analyzed.

Soot Concentration and Temperature Measurements in Laminar Ethylene Jet Double-concentric Diffusion Flames (동축 이중 에틸렌 확산화염의 매연 농도분포 및 온도 측정)

  • Lee, Gyo-U;Jeong, Jong-Su;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.402-409
    • /
    • 2002
  • Experiments were performed with double-concentric diffusion flame(DDF) in order to investigate the characteristics of soot formation and temperature distributions. The flame size and shape of the DDF are similar to those of the well-known normal co-flow diffusion flame(WF), except the formation of a tiny inverse flame near the central tube exit. A laser light extinction technique was used to measure the soot volume fractions. The temperature distributions in the flame were measured by rapid insertion of a R-type thermocouple. Soot concentrations along the flame axis of the DDF were higher than those of the NDF. However, the maximum soot volume fraction of the DDF along the periphery of the flame was lower than that of the NDF. It is mainly due to the effect of nitrogen-dilution from the inner air. Measured temperature distribution explains these trends of soot concentration. The temperature along the flame axis was also higher in DDF than that of the NDF. However, the flame temperatures at the flame front of the two flames were almost same regardless of the inner flame. This phenomenon means that the inverse flame inside the DDF did not affect on the flame structure including the temperature and soot concentration, except the region around the flame axis.

The Effect of Swirl on the Blowout Velocities of Partially Premixed Interacting Flames (스월이 부분예혼합 상호작용화염의 화염날림 유속에 미치는 영향)

  • Lee, Byeong-Jun;Choi, Kwang-Deok
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.26-31
    • /
    • 2009
  • Adding small amounts of air to the fuel is used in many commercial combustors to avoid sooty flame. But partially premixed jet flame has lower blowout velocity, $u_{b.o}$, than nonpremixed one. Increasing blowout limit would be one of the key factors to develope highly intense compact combustion devices. Swirling flow enhances fuel and air mixing and induces a highly turbulent recirculation zone, which helps flame stabilization. It was known that NOx emission decreases with swirl on the proper range of swirl number. And it was shown that the flame interaction in multiple jets also increases $u_{b.o}$ owing to the internal recirculation and reduces NO emission. If the effects of swirl and flame interaction are combined together in partially premixed flame, both $u_{b.o}$ increasement and NOx emission reduction could be achieved. Blowout limits of partially premixed interacting propane flame in the swirling air coflow are investigated experimentally. The results show that the flame is not extinguished up to the experimental limits, 210 m/s, at the swirl number of 0.32 and $X_{F,o}$ = 0.46.

  • PDF

Reseach on Structure of Turbulent Premixed Opposed Impinging Jet Flame with Simultaneous PIV/OH PLIF measurements (PIV/OH PLIF 동시측정을 이용한 난류 대향 분출 예혼합화염 구조 연구)

  • Cho, Yong-Jin;Kin, Ji-Ho;Cho, Tae-Young;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.1-9
    • /
    • 2002
  • Simultaneous PIV and OH PLIF measurements are used for shear strain rates and flame locations, respectively. It is believed that the shear strain rates represent flow characteristics such as turbulence intensity and the OH intensity indicates the flame characteristics such as burning velocities. However, these are still lack of geometric information, which may be very important to flame quenching Hence, fractal dimensions 'Df) of the OH images are adopted as an additional information. Finally, the flame structure diagram proposed in this research has three parameters, which consist of strain rates, OH intensities and fractal dimensions. The results show that this diagram classifies turbulent premixed flames more effectively based on flame structures. The regime of weak turbulence is limited to narrow strain ranges and has the fractal dimension of about 2 In the regime of moderate turbulence, OH intensities increase as strain rates increase and the values of fractal dimensions are 1.8 Df 1.95. The regimes of thickened reaction and flame extinction (quenching) show bell-shaped and their values of fractal dimensions are 1.5 Df 1.7 and 0.9 Df 0.6, respectively.

  • PDF

Self-Excited Noise Generation from Laminar Methane/Air Premixed Flames in Thin Annular Jets

  • Kim K. N.;Joung J. H.;Jin S. H.;Chung S. H.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.147-155
    • /
    • 2004
  • Self-excited noise generation from laminar flames in thin annular jets of methane/air premixture has been investigated experimentally. Various flames were observed in this flow configuration, including conical shape flames, ring shape flames, steady crown shape flames, and oscillating crown shape flames. Self-excited noise with the total sound pressure level of about 70dB was generated from the oscillating crown shape flames for the equivalence ratio larger than 0.95. Sound pressure and $CH^*$ chemiluminescence were measured by using a microphone and a photomultiplier tube. The frequency of generated noise was measured as functions of equivalence ratio and premixture velocity. A frequency doubling phenomena have also been observed. The flame shape during flame oscillation was reconfirmed by a synchronized PIV experiment. The velocity and pressure field were obtained from PIV. The minimum pressure was formed near the edge of flame representing circulation. By comparing the results of sound pressure, flame luminosity and PIV, the noise source can be attributed to the flame front fluctuation near the edge of the oscillating crown-shape flames.

  • PDF

Modulation of Subcellular Ca2+ Signal by Fluid Pressure in Rat Atrial Myocytes

  • Woo Sun-Hee;Morad Martin
    • Biomolecules & Therapeutics
    • /
    • v.14 no.1
    • /
    • pp.19-24
    • /
    • 2006
  • Atrial chambers serve as mechanosensory systems during the haemodynamic or mechanical disturbances, which initiates arrhythmia. Atrial myocytes, lacking t-tubules, have two functionally separate sarcoplasmic reticulums (SRs): those at the periphery close to the surface membrane, and those at the cell interior (center) not associated with the membrane. To explore possible role of fluid pressure (FP) in the regulation of atrial local $Ca^{2+}$ signaling we investigated the effect of FP on subcellular $Ca^{2+}$ signals in isolated rat atrial myocytes using confocal microscopy. FP was applied to whole area of single myocyte with pressurized automatic micro-jet (200-400 $mmH_2O$) positioned close to the cell. Application of FP enhanced spontaneous occurrences of peripheral and central $Ca^{2+}$ sparks with larger effects on the peripheral release sites. Unitary properties of single sparks were not altered by FP. Exposure to higher FP often triggered longitudinal $Ca^{2+}$ wave. These results suggest that fluid pressure may directly alter excitability of atrial myocytes by activating $Ca^{2+}$-dependent ionic conductance in the peripheral membrane and by enhancing spontaneous activation of central myofilaments.

Uncertainty Analysis and Improvement of an Altitude TestFacility for Small Jet Engines

  • Jun, Yong-Min;Yang, In-Young;Kim, Chun-Taek;Yang, Soo-Seok;Lee, Dae-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.46-56
    • /
    • 2004
  • The verification and improvement of the measurement uncertainty have beenperformed in the altitude test facility for small gas turbine engines, which was built atthe Korea Aerospace Research Institute (KARI) in October 1999. This test is performedwith a single spool turbojet engine at several flight conditions. This paper discussesthe evaluation and validation process for the measurement uncertainty improvements usedin the altitude test facility. The evaluation process, defined as tests before the facilitymodification, shows that the major contnbutors to the measurement uncertainty are theflow meter discharge coefficient, the inlet static and total pressures, the cell pressureand the fuel flow rate. The measurement uncertainty is focused on the primary parametersof the engine performance such as airflow rate, thrust and specific fuel consumption (SFC).The validation process, defined as tests after the facility modification, shows that themeasurement uncertainty, in seal level condition, is tmproved to the acceptable level throughthe facility modification. In altitude test conditions, the measurement uncertainties arenot improved as much as the uncertainty in sea level condition.

A STUDY ON HIGH-EFFICIENCY ATOMIZATION OF MOLTEN MATERIALS (PART 1: AN EXPERIMENTAL STUDY ON SUPPLYING MECHANISM BY AIR JETS) (Atomize 법에 의한 용융소재의 고효율 미세화에 관한 연구 (제1보:공기제트에 의한 액체의 공급기구))

  • Oh, J.G.;Lee, Ch.W.;Seok, J.K.
    • Journal of ILASS-Korea
    • /
    • v.2 no.2
    • /
    • pp.35-42
    • /
    • 1997
  • An innovating technique of atomizer has been proposed to supply and to atomise molten materials. Both of a simple geometry of nozzle and an improved nozzle have been fabricated in the present study. With these nozzles, characteristics of the suction and disintegration have been empirically investigated. The important conclusions are as follows; In the case of a simple nozzle: 1) Although the sucking up and supplying of molten materials are available, the applications of powder metallurgy are limited. 2) It is concluded that the more air flow rate, $W_A$ or the shorter the height of air nozzle from the surface of supplied water, $L_h$, the more the atomizing mass of liquids, $W_L$. In the case of an improved nozzle: 3) The stable liquids can be supplied due to cut off the passage of surrounding air entrainment by air jets. 4) The atomizing mass of liquids, $W_L$ has affected not so much on the height of nozzle from the surface of supplied water, $L_h$ as that from the orifice, hc.

  • PDF