• Title/Summary/Keyword: jerk force

Search Result 21, Processing Time 0.028 seconds

Extraction of Major Training Method that are Highly Related to Snatch Record and Jerk Record Improvement (역도 인상, 용상 기록향상과 관계가 높은 주요 훈련종목 추출)

  • Moon, Young Jin;Park, Tae Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.2
    • /
    • pp.148-153
    • /
    • 2021
  • Objective: It is to extract training items that have a high relationship with the improvement of weightlifting records through correlation and regression analysis between training methods used commonly in the field and Snatch records and jerk records. Through this, it is intended to promote training efficiency to improve the records of weightlifters. Method: For 90 elite weightlifters of the professional teams, 4 groups (lightweight (30 people): 61 kg, 67 kg, 73 kg., middleweight (30 people): 81 kg, 89 kg, 96 kg., heavyweight (30 people): 102 kg, 109 kg, +109 kg., the whole group (90 people)) were divided. At the significance level of 0.05, correlation analysis and linear regression analysis were performed between record of training methods used widely in the field and Snatch records and Jerk records. Results: First, the better the record in Jerk, the better the Snatch record. Second, the three training methods HS, ForceS and WP performed in the field were all found to be important factors related to the improvement of Snatch record. Third, In the jerk where there are more types of training than Snatch, three training methods (HC, ForceS, BPP) appeared to be an important training method for improving the jerk record. Conclusion: While many training methods have been devised and carried out in the field, 3 types of training (HS, ForceS, WP) for improving Snatch record and 3 types of training (HC, ForceS, BPP) for improving Jerk record was found to be the most influential training method. Since all of them showed a large value of explanatory power by regression analysis, it is considered that this study is meaningful in that it can promote training efficiency by simplifying although there are many types of training for athletes.

The Analysis of Differences in Pulmonary Functions, Jerk Cost, and Ground Reaction Force Depending on Professional and Amateur Dancers in Korea Dance (한국무용 숙련자와 미숙련자에 따른 폐기능, 부드러움, 그리고 지면반력의 차이 분석)

  • Park, Yang-Sun;Kim, Mee-Yea;Lee, Sung-Ro
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.349-357
    • /
    • 2014
  • The purpose of this study was to examine the differences in the performance of dancing motions depending on the level of skill by investigating pulmonary functions, ground reaction force, and jerk cost. The subjects of this study were 12 professional dancers (career: 16 yrs) and 12 amateur dancers (career: 9 yrs) who had similar physical conditions. We selected four motion phases which included the diagonal line motion, the deep flexion motion, the breath motion, and the turn motion with one leg after a small step walking motion, with Goodguri Jangdan. In the experiment, 6 infrared cameras were installed in order to analyze the value of the jerk costs and the force plate form. Finally, we measured the pulmonary functions of the subjects. For data analysis, independent t-tests according to each event, were carried out in the data processing. According to the results of FVC % Predicted, the professional dancers showed greater lung capacities than the amateur dancers, indicating that the level of dancing skill influences lung capacity. Based on the result of the balance test, the professional dancers used more vertical power than did the amateur dancers when performing maximal flexion motion. The professional dancers used a propulsive force of pushing their body forward by keeping the center of body higher while the amateur dancers used a braking power by keeping their bodies backward. When performing medial-lateral movements, the amateur dancers were less stable than the professional dancers. There were no differences in values of jerk costs between the amateur dancers and the professional dancers.

Feed rate optimizaton of a PMLSM driven feed drive system for minimum vibrations (리니어모터 이송시스템의 진동저감을 위한 이송속도 최적화)

  • Choi Young-Hyu;Choi Eung-Young;Kim Gyu-Tak
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.97-102
    • /
    • 2005
  • This paper presents feed rate optimizaton of a PMLSM driven feed-slide for mininum vibrations by smoothing velocity curve with finite jerk. First of all, the PMLSM was designed and made to reduce detent force. Next, a PMLSM driven feed-slide system was mathematically modeled as a 4-degree-of-freedom lumped parameter model. The key idea of our vibration minimization method is to find out the most appropriate smooth velocity curve with finite jerk. The validity of our proposed method has been verified by comparing computer simulation results of the feed-slide model with experimental ones.

  • PDF

A Study on the Optimal Acceleration Profile to Reduce Vibration of PMLSM (PMLSM의 진동저감을 위한 최적의 속도 궤적 생성에 관한 연구)

  • Lee Dong-Yeup;Kim Gyu-Tak;Choi Young-Hyu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.8
    • /
    • pp.351-357
    • /
    • 2005
  • This paper presents vibration minimization of a PMLSM driven feed-slide by using optimized smooth velocity curve with finite jerk. First of all, the PMLSM was designed and made to reduce detent force. Next, a PMLSM driven feed-slide system was mathematically modeled as a 4-degree-of-freedom lumped parameter model. The key idea of our vibration minimization method is to find out the most appropriate smooth velocity(feedrate) curve with finite jerk. The validity of our proposed method has been verified by comparing computer simulation results of the feed-slide model with experimental ones.

Optimization of Disc Braking Force pattern from the viewpoint of Braking Energy (제동에너지 관점에서의 최적 디스크 제동력 패턴 설정)

  • Kim, Young-Guk;Park, Chan-Kyoung;Kim, Ki-Hwan;Kim, Seog-Won
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.294-299
    • /
    • 2006
  • Korean high speed train(HSR-350x) has adopted a combined electrical and mechanical(friction) braking system. Brake blending control unit(BBCU) controls each brake system to fulfill the required brake performances such as braking distance, deceleration and jerk. When the disc brake is applied in the high speed region, the wear of pad is increased rapidly. In this paper, we discuss the optimized patterns of the disc brake force from the view point of braking energy.

  • PDF

Discussion of the relationship between adhesion force and braking force in slip condition (제동시 점착력과 제동력의 관계에 대한 고찰)

  • Kim, Young-Guk;Kim, Seog-Won;Mok, Jin-Yong;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1005-1011
    • /
    • 2007
  • The brake system of train must posses the large braking effort in order to stop the train safely within the limited traveling distance. But, the excessive braking effort has been deteriorated the ride comfort due to high level of deceleration and jerk, and sometimes occurred the skid, because the applied braking force exceeds the allowable adhesive force. This skid causes not only to increase the stopping distance but also to deteriorate the safety of train and damage the rail surface by wheel flat. In the present paper, the braking force for disc brake of Korea High Speed Train (HSR350x) was measured through on-line test and the adhesion force was estimated by using the analytic model in the skid condition. Also, we have discussed the relationship between the actual disc brake force and the adhesion force in real skid condition.

  • PDF

Numerical Performance Analysis of Obstacle Avoidance Method for a Mobile Robot (이동 로봇 장애물 회피 방법의 수치적 성능 분석)

  • Kim, Kwang-Jin;Ko, Nak-Yong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.2
    • /
    • pp.401-407
    • /
    • 2012
  • This paper analyzes performance of major obstacle avoidance methods. For the analysis, numerical performance indexes are proposed: motion distance to goal point, motion time, distance to obstacles, and smoothness of the motion. Especially, the index of smoothness measures efficiency of the motion using the angular acceleration and jerk of the robot heading. Four major obstacle avoidance methods are compared in terms of the performance indexes. The four methods are artificial potential field(APF) method, elastic force(EF) method, APF with virtual distance, and EF with virtual distance. Through simulation, the four methods are compared and features of the methods are explored.

Discussion of the relationship between tractive power and braking power in initial time (초기기동시 추진력과 제동력 관계에 대한 고찰)

  • Lee, Gi-Sik;Han, Sung-Ho;Jung, Kwon-Il
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1643-1648
    • /
    • 2009
  • The braking system of train must posses the large baking effort in order to stop the train safety within the limited traveling distance. but, the excessive braking effort has been deteriorated the ride comfort due to high level of deceleration and jerk, and sometimes occurred the skid. because the applied braking force exceeds the allowable adhesive force. this skid causes not only to increase the a stopping distance but also to deteriorate the safety of train and damage the rall surface by wheel flat. In the present paper, braking force for disk brake of Tilting Train eXpress(TTX) was measured though on convention line test and the traction force was estimated by using the analytic model in skid condition. also, we have discussed the relationship between the bake force and traction force in starting condition.

  • PDF

Analysis of Impulse Force and Kinematic Factors of the Limbs during Stefan Holm's Take-off Phase and Penultimate Stride of High Jump (Stefan Holm의 높이뛰기 발구름 동작에서의 충격력과 상지와 하지 분절의 운동학적 분석)

  • Lee, Jin-Taek
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.97-105
    • /
    • 2011
  • The purpose of this study was to investigate the kinetic factors of Stefan holm's take-off motion and provide the technical data. Collected data of the subject(height: 181 cm, weight: 71 kg, record: 230 cm) were used for the last two strides and take-off phase. The results were as follows: The vertical impulse force was 2044.8 N which was 2.49 times and the anterior-posterior impulse force was -1306.4 N which was 1.88 times of the subject's weight. The take-off leg angular velocities($\omega_x,\;\omega_y$) were switched drastically from clockwise to count clockwise direction between two-step touchdown and take-off. The highest jerk of the take-off foot was 368.97 m/s3 during the two step take-off and the take-off foot made an impact to the ground with 1225.07 m/s3 during the one step touchdown.