• Title/Summary/Keyword: jahn-teller effect

Search Result 33, Processing Time 0.02 seconds

Low-Temperature Small Polaron Hopping Conduction in Bilayer La1.4(Sr0.2Ca1.4)Mn2O7 Ceramics (이중 층 La1.4(Sr0.2Ca1.4)Mn2O7 세라믹스의 저온에서의 Small Polaron Hopping 전도)

  • Jung, Woo-Hwan
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.26-31
    • /
    • 2008
  • The dc resistivity and thermoelectric power of bilayered perovskite $La_{1.4}(Sr_{0.2}Ca_{1.4})Mn_2O_7$ were measured as a function of the temperature. In the ferromagnetic phase, ${\rho}(T)$ was accurately predicted by $a_0+a_2T^2+a_{4.5}T^{4.5}$ with and without an applied field. At high temperatures, a significant difference between the activation energy deduced from the electrical resistivity and thermoelectric power, a characteristic of small polarons, was observed. All of the experimental data can be feasibly explained on the basis of the small polaron.

Polarization of the A-Band Emission from RbCl : Pb$^{2+}$

  • Kang, Jun-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.115-118
    • /
    • 1987
  • The angular dependence of polarization of the A-band emission from RbCl:$Pb^{2+}$ is measured at 13.4 K to determine the symmetry axes of the $Pb^{2+}-v^-_c$ dipoles. The results indicate that these centers posess tetragonal symmetry. This implies that $v^-_c$ is situated in the next-nearest-neighbor (nnn) position to the $Pb^{2+}$ ion. The polarization ratio of the A-band emission measured at various temperatures is found to be independent of the temperature. The temperature independence of polarization confirms that, for the ion, the Jahn-Teller effect reduced by strong spin-orbit interaction does not give rise to thermal depolarization.

Structure and Bonding of Perovskites A($Cu_{1/3}Nb_{2/3}$)$O_3$ (A=Sr, Ba and Pb) and their Series of Mixed Perovskites

  • Park Hyu-Bum;Huh Hwang;Kim Si-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.122-127
    • /
    • 1992
  • Some perovskites $A($Cu_{1}3}Nb_{2}3}$)O_3(A=$Sr^{2+}$$, $Ba^{2+}$ and $Pb^{2+}$) and their series of mixed perovskites have been prepared by solid state reaction. Single perovskite phase was obtained in Sr or Ba rich samples, but pyrochlore phase was found in Pb rich samples. The stability of perovskite phase is dependent on the ionicity of bonding as well as the tolerance factor. All the obtained perovskites have tetragonal symmetry distorted by Jahn-Teller effect of $Cu^{2+}$. In the case of $Sr(Cu_{1}3}Nb_{2}3})O_3$, some superlattice lines caused by threefold enlarging of fundamental unit cell were observed. And, the symmetry of B site octahedron and the bonding character of B-O bond have been studied by IR, ESR and diffuse reflection spectroscopy. It appeared that the symmetry and the bonding character are influenced by such factors as the size and the basicity of A cation.

The Effect of Reaction Temperature for Synthesis of LiMn2O4 by Calcination Process and the Electrochemical Characteristics (소성법에 의한 LiMn2O4의 제조시 반응 온도의 영향과 전기화학적 특성)

  • Lee, Chul-Tae;Lee, Jin-Sik;Kim, Hyun-Joong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.220-225
    • /
    • 1998
  • The spinel structured $LiMn_2O_4$ was prepared from $Li_2CO_3$ and $MnO_2$ by calcination at various temperatures in the range of $750{\sim}900^{\circ}C$. It was found that the most suitable cubic structure of $LiMn_2O_4$ was obtained by heating at $850^{\circ}C$ for 12 hrs. However, in the calcination at $900^{\circ}C$, $Mn^{4+}$ of 0.06M was changed to $Mn^{+3}$ by the oxygen loss, so that it has been shown that the formula has changed to $LiMn_2O_{3.97}$. This phenomena were in agreement with the Jahn-Teller distortion by the increment of $Mn^{+3}$ ion on the octahedral sites of the spinel structured $LiMn_2O_4$. The results showed that after 15 charge/discharge cycles in the voltage range from 3.5V to 4.3V versus Li/$Li^+$ with a current density of $0.25mA/cm^2$, the spinel structured $LiMn_2O_4$ that was prepared at $900^{\circ}C$ showed a lower discharge capacity, 82~50 mAh/g, while the $LiMn_2O_4$, prepared at $850^{\circ}C$, showed the discharge capacity of 102~64 mAh/g.

  • PDF

Electrical Characteristics of Cathode Li($Mn_{1-\delta}$$M_{\delta}$)$_2$$O_4$ Substituted by Transition Metals in Li-Ion Secondary Batteries (전이금속 치환 리튬이온 이차전지 정극 Li($Mn_{1-\delta}$$M_{\delta}$)$_2$$O_4$의 전기적 특성)

  • 박재홍;김정식;유광수
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.466-472
    • /
    • 2000
  • As cathode materials of LiMn2O4-based lithium-ion secondary batteries, Li(Mn1-$\delta$M$\delta$)2O4 (M=Ni and Co, $\delta$=0, 0.05, 0.1 and 0.2) materials which Co and Ni are substituted for Mn, were syntehsized by the solid state reaction at 80$0^{\circ}C$ for 48 hours. No second phases were formed in Li(Mn1-$\delta$M$\delta$)2O4 system with substitution of Co. However, substitution of Ni caued to form a second phase of NiO when its composition exceeded over 0.2 of $\delta$ in Li(Mn1-$\delta$M$\delta$)2O4. As the results of charging-discharging test, the maximum capacity of Li(Mn1-$\delta$M$\delta$)2O4 appeared in $\delta$=0.1 for both Co and Ni. Also, Li(Mn1-$\delta$M$\delta$)2O4 electrode showed higher capacity and better cycle performance than LiMn2O4.

  • PDF

Enhanced Electrochemical Properties of Surface Modified LiMn2O4 by Li-Fe Composites for Rechargeable Lithium Ion Batteries

  • Shi, Jin-Yi;Yi, Cheol-Woo;Liang, Lianhua;Kim, Keon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.309-314
    • /
    • 2010
  • The surface modified $LiMn_2O_4$ materials with Li-Fe composites were prepared by a sol-gel method to improve the electrochemical performance of $LiMn_2O_4$ and were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), and transmission electron microscopy (TEM)-EDS. XRD results indicate that all the samples (modified and pristine samples) have cubic spinel structures, and XRD, XPS, and TEM-EDS data reveal the formation of $Li(Li_xFe_xMn_{2-2x})O_4$ solid solution on the surface of particles. For the electrochemical properties, the modified material demonstrated dramatically enhanced reversibility and stability even at elevated temperature. These improvements are attributed to the formation of the solid solution, and thus-formed solid solution phase on the surface of $LiMn_2O_4$ particle reduces the dissolution of Mn ion and suppresses the Jahn-Teller effect.

The study on Fabrication and Characterization of $LiMn_{2-x}Cu_{x}O_{4}$for cathode material of Lithium-ion Battery (리튬이온 이차전지 양극활물질 $LiMn_{2-x}Cu_{x}O_{4}$의 제작과 전극특성에 관한 연구)

  • 박종광;고건문;홍세은;윤기웅;안용호;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.713-716
    • /
    • 2001
  • In many papers, the electrochemical analysis of LiMn$_2$O$_4$shows the transition results of Mn$^{3+}$ ion. Charge ordering is accompanied by simultaneous orbital ordering due to the Jahn-Teller effect in Mnl$^{3+}$ ions. To analyze the cycle performance of LiMn$_{2-x}$Cu$_{x}$ O$_4$as the cathode of 4 V class lithium secondary batteries, XRD, TGA analysis were conducted. Although the cycle performance of the LiMn$_{2-x}$Cu$_{x}$ O$_4$was improved from pure LiMn$_2$O$_4$, the discharge capacity was significantly lower than LiCoO$_2$. In this paper, We study the Electrochemical characterization and enhanced stability of Cu-doped spinels in the LiMn$_{2-x}$Cu$_{x}$ O$_4$upon initial cycling.l cycling.

  • PDF

1D-Coordination Polymer Formed by Structural Conversion of an Oxazolidine Ligand in Reaction with the Copper(II) Halides

  • Mardani, Zahra;Golsanamlou, Vali;Jabbarzadeh, Zahra;Moeini, Keyvan;Carpenter-Warren, Cameron;Slawin, Alexandra M.Z.;Woollins, J. Derek
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.5
    • /
    • pp.372-376
    • /
    • 2018
  • A 1D-coordination polymer of $1D-\{Cu({\mu}-picolinato)_2\}$ $\{Hakimi,\;2012\;\sharp73\}_n$ (1), was prepared by the reactions between 2-(2-(pyridin-2-yl)oxazolidin-3-yl)ethanol (AEPC) ligand and $CuCl_2$ or $CuBr_2$. The product was characterized by elemental analysis, UV-Vis, FT-IR spectroscopy and single-crystal X-ray diffraction. The X-ray analysis results revealed that the AEPC ligand, after reactions with the copper(II) chloride or bromide, gives the same product - $1D-\{Cu({\mu}-picolinato)_2\}_n$ (1). The coordination modes for various picolinate-based ligands were extracted from the Cambridge Structural Database (CSD). In the crystal structure of 1, the copper atom has a $CuN_2O_4$ environment and octahedral geometry, which is distorted by elongation of the axial bond lengths due to the Jahn-Teller effect.

Small Polaron Hopping Conduction of n=3 Ruddlesden-Popper Compound La2.1Sr1.9Mn3O10 System (n=3인 Ruddlesden-Popper형 La2.1Sr1.9Mn3O10의 Small polaron Hopping 전도)

  • Jung, Woo-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.294-298
    • /
    • 2002
  • Polycrystalline $La_{2.1}Sr_{1.9}Mn_3O_{10}$ with layered perovskite structure have been successfully synthesized and investigated with respect to their thermoelectric, electric and magnetic properties. The large magnetoresistance (MR) effect with $-{\Delta}{\rho}/{\rho}_0$ of ∼120% at 0.85T was observed in a wide temperature range below a cusp temperature in resistivity of about 120K, which is well below the magnetic $T_C$. At high temperature, a singnificant difference between the activation energy deduced from the electrical resistivity and thermoelectric power, a characteristic of small polaron, is observed. All of the experimental data can be well explained on the basis of the small polaron model.

Crystallographic and Magnetic Properties of Cu0.1Fe0.9Cr2S4 (Cu0.1Fe0.9Cr2S4의 결정학적 및 자기적 성질에 관한 연구)

  • Son, Bae-Soon;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.1
    • /
    • pp.33-37
    • /
    • 2004
  • Cu$_{0.1}$Fe$_{0.9}$Cr$_2$S$_4$ has been studied with Mossbauer spectroscopy, x-ray diffraction, vibrating sample magnetometer (VSM), and magnetoresistance (MR) measurement. The crystal structure was determined to be a cubic spinel with lattice parameter a$_{0}$=9.9880 $\AA$. The MR measurements show a semiconductor behavior below 110 K and metal behaved above 100 K. The temperature dependence of magnetization of Cu$_{0.1}$Fe$_{0.9}$Cr$_2$S$_4$ was reported. In addition to a large irreversibility between the zero-field-cooling (ZFC) and the field-cooling (FC) magnetization at applied field H=100 Oe, a cusp-like anomaly was observed in both the FC and ZFC curves. It shifted toward the lower temperature region with increasing magnetic field, and then showed convex type maximum at 110 K, under the applied field of 5 kOe. The Mossbauer spectra were measured from 15 K to room temperature. The asymmetric line broadening was observed for the sample Cu$_{0.1}$Fe$_{0.9}$Cr$_2$S$_4$, and it was considered to be dynamic Jahn-Teller relaxation. The charge state of Fe ions was ferrous in character. The unusual reduction of magnetic hyperfine field below 110 K was interpreted in terms of cancellation effect between the mutually opposite orbital current field (H$_{L}$) and Fermi contact field (H$_{C}$).