• Title/Summary/Keyword: jacobian matrix

Search Result 230, Processing Time 0.023 seconds

A Study on the Calculation Scheme of Extreme Loading Point and Nose Curves using Modified N-R and Continuation Method (수정N-R법과 연속음형법을 이용한 임계부하점 및 Nose Curve 산정기법 연구)

  • Yu, In-Keun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.712-722
    • /
    • 1992
  • Several voltage instability/collapse problems that have occurred in the electric utility industry worldwide have gained the attention of engineers and researchers of electric power systems. This paper proposes an effective calculation scheme of the extreme loading point and nose curves(P-V curves) using modified Newton-Raphson(N-R) load flow method and the Continuation Method. This method provides detail and visual information of the power system voltage profile and operating margin ro operators and planners. In this paper, a modified load flow claculation method for ill-conditioned power systems is introduced for the purpose of seeking more precise load flow solutions and nose curves, and the Continuation Method is also used as a part of the solution algorithm for the calculation of extreme loading point and nose curves. The conventional polar coordinate based N-R load flow program is modified to avoid numerical difficulties caused by the singularity of the Jacobian matrix occuring in the vicinity of extreme loading point of heavily loaded systems. Application results of the proposed method to Klos-Kerner 11-bus system and modified IEE-30-bus system are presented to assure the usefulness of the approach.

  • PDF

A Dexterous Motion Control Method of Redundant Robot Manipulators based on Neural Optimization Networks (신경망 최적화 회로를 이용한 여유자유도 로봇의 유연 가조작 모션 제어 방법)

  • Hyun, Woong-Keun;Jung, Young-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.756-765
    • /
    • 2001
  • An effective dexterous motion control method of redundant robot manipulators based on neural optimization network is proposed to satisfy multi-criteria such as singularity avoidance, minimizing energy consumption, and avoiding physical limits of actuator, while performing a given task. The method employs a neural optimization network with parallel processing capability, where only a simple geometric analysis for resolved motion of each joint is required instead of computing of the Jacobian and its pseudo inverse matrix. For dexterous motion, a joint geometric manipulability measure(JGMM) is proposed. JGMM evaluates a contribution of each joint differential motion in enlarging the length of the shortest axis among principal axes of the manipulability ellipsoid volume approximately obtained by a geometric analysis. Redundant robot manipulators is then controlled by neural optimization networks in such a way that 1) linear combination of the resolved motion by each joint differential motion should be equal to the desired velocity, 2) physical limits of joints are not violated, and 3) weighted sum of the square of each differential joint motion is minimized where weightings are adjusted by JGMM. To show the validity of the proposed method, several numerical examples are illustrated.

  • PDF

Power Flow Calculation Method of DC Distribution Network for Actual Power System

  • Kim, Juyong;Cho, Jintae;Kim, Hongjoo;Cho, Youngpyo;Lee, Hansang
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.419-425
    • /
    • 2020
  • DC distribution system has been evaluated as an excellent one in comparison with existing AC distribution network because it needs fewer power conversion stages and the full capacity of the equipment can be used without consideration for power factor. Recently, research and development on the implementation of DC distribution networks have been progressed globally based on the rapid advancement in power-electronics technology, and the technological developments from the viewpoint of infrastructure are also in progress. However, to configure a distribution network which is a distribution line for DC, more accurate and rapid introduction of analysis technology is needed for the monitoring, control and operation of the system, which ensure the system run flexible and efficiently. However, in case of a bipolar DC distribution network, there are two buses acting as slack buses, so the Jacobian matrix cannot be configured. Without solving this problem, DC distribution network cannot be operated when the network is unbalanced. Therefore, this paper presented a comprehensive method of analysis with consideration of operating elements which are directly connected between neutral electric potential caused by the unbalanced of load in DC distribution network with bipolar structure.

Singularity Avoidance Path Planning on Cooperative Task of Dual Manipulator Using DDPG Algorithm (DDPG 알고리즘을 이용한 양팔 매니퓰레이터의 협동작업 경로상의 특이점 회피 경로 계획)

  • Lee, Jonghak;Kim, Kyeongsoo;Kim, Yunjae;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.137-146
    • /
    • 2021
  • When controlling manipulator, degree of freedom is lost in singularity so specific joint velocity does not propagate to the end effector. In addition, control problem occurs because jacobian inverse matrix can not be calculated. To avoid singularity, we apply Deep Deterministic Policy Gradient(DDPG), algorithm of reinforcement learning that rewards behavior according to actions then determines high-reward actions in simulation. DDPG uses off-policy that uses 𝝐-greedy policy for selecting action of current time step and greed policy for the next step. In the simulation, learning is given by negative reward when moving near singulairty, and positive reward when moving away from the singularity and moving to target point. The reward equation consists of distance to target point and singularity, manipulability, and arrival flag. Dual arm manipulators hold long rod at the same time and conduct experiments to avoid singularity by simulated path. In the learning process, if object to be avoided is set as a space rather than point, it is expected that avoidance of obstacles will be possible in future research.

Development of Efficient Monitoring Algorithm at EGS Site by Using Microseismic Data (미소진동 자료를 이용한 EGS 사이트에서의 효율적인 모니터링 알고리듬 개발)

  • Lee, Sangmin;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.3
    • /
    • pp.111-120
    • /
    • 2016
  • In order to enhance the connectivity of fracture network as fluid path in enhanced/engineered geothermal system (EGS), the exact locating of hydraulic fractured zone is very important. Hydraulic fractures can be tracked by locating of microseismic events which are occurred during hydraulic fracture stimulation at each stage. However, since the subsurface velocity is changed due to hydraulic fracturing at each stage, in order to find out the exact location of microseismic events, we have to consider the velocity change due to hydraulic fracturing at previous stage when we perform the mapping of microseimic events at the next stage. In this study, we have modified 3D locating algorithm of microseismic data which was developed by Kim et al. (2015) and have developed 3D velocity update algorithm using occurred microseismic data. Eikonal equation which can efficiently calculate traveltime for complex velocity model at anywhere without shadow zone is used as forward engine in our inversion. Computational cost is dramatically reduced by using Fresnel volume approach to construct Jacobian matrix in velocity inversion. Through the numerical test which simulates the geothermal survey geometry, we demonstrated that the initial velocity model was updated by using microseismic data. In addition, we confirmed that relocation results of microseismic events by using updated velocity model became closer to true locations.

A Study on a Sliding Mode Control Algorithm for Dynamic Positioning System of a Vessel (선박의 동적위치유지 시스템을 위한 Sliding Mode 제어 연구)

  • Young-Shik Kim;Jang-Pyo Hong
    • Journal of Navigation and Port Research
    • /
    • v.47 no.4
    • /
    • pp.256-270
    • /
    • 2023
  • In this study, a sliding mode (SM) controller for dynamic positioning (DP) was specifically designed for a turret connection operation of a ship or an offshore structure in which an arbitrary point on the structure could be controlled as the motion center instead of the center of mass. The SM controller allows control of the arbitrary point and provides capability to manage uncertainties in the dynamics of ships and offshore structures, external forces caused by unknown changing marine environments, and transient performance of DP systems. The Jacobian matrix included in kinematic equations of the controlled object was modified to design the SM controller to control based on an arbitrary point of ships or offshore structures. To ensure robustness of the controller, the Lyapunov stability theory was applied in the design of the SM controller. In general, for robustness in DP control, gain scheduling based on a proportional-derivative (PD) control algorithm is employed. However, finding appropriate gains for gain scheduling complicates the application of DP systems. Therefore, in this study, the SM control algorithm was considered to mitigate the complexity of the DP controller for ships and offshore structures. To validate the proposed SM control algorithm, time-domain simulations were conducted and utilized to evaluate the performance of the control algorithm. The effectiveness of the proposed SM controller was assessed by comparing simulation results with results of a conventional PD control algorithm applied in DP control.

GAS-LIQUID TWO-PHASE HOMOGENEOUS MODEL FOR CAVITATING FLOW -Part II. HIGH SPEED FLOW PHENOMENA IN GAS-LIQUID TWO-PHASE MEDIA (캐비테이션 유동해석을 위한 기- 2상 국소균질 모델 -제2보: 기-액 2상 매체중의 고속유동현상)

  • Shin, B.R.;Park, S.;Rhee, S.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.91-97
    • /
    • 2014
  • A high resolution numerical method aimed at solving cavitating flow was proposed and applied to gas-liquid two-phase shock tube problem with arbitrary void fraction. The present method with compressibility effects employs a finite-difference 4th-order Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL TVD scheme. The Jacobian matrix from the inviscid flux of constitute equation is diagonalized analytically and the speed of sound for the two-phase media is derived by eigenvalues. So that the present method is appropriate for the extension of high order upwind schemes based on the characteristic theory. By this method, a Riemann problem for Euler equations of one dimensional shock tube was computed. Numerical results of high speed flow phenomena such as detailed observations of shock and expansion wave propagations through the gas-liquid two-phase media and some data related to computational efficiency are made. Comparisons of predicted results and solutions at isothermal condition are provided and discussed.

DEVELOPMENT OF A NEW ION TRANSPORT CODE FOR PLANETARY IONOSPHERES WITH EXPLICIT TREATMENT OF ION-ION COLLISION

  • KIM YONG HA
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.59-66
    • /
    • 2005
  • A new ion transport code for planetary ionospheric studies has been developed with consideration of velocity differences among ion species involving ion-ion collision. Most of previous planetary ionosphere models assumed that ions diffuse through non-moving ion and neutral background in order to consolidate continuity and momentum equations for ions into a simple set of diffusion equations. The simplification may result in unreliable density profiles of ions at high altitudes where ion velocities are fast and their velocity differences are significant enough to cause inaccuracy when computing ion-ion collision. A new code solves explicitly one-dimensional continuity and momentum equations for ion densities and velocities by utilizing divided Jacobian matrices in matrix inversion necessary to the Newton iteration procedure. The code has been applied to Martian nightside ionosphere models, as an example computation. The computed density profiles of $O^+,\;OH^+$, and $HCO^+$ differ by more than a factor of 2 at altitudes higher than 200 km from a simple diffusion model, whereas the density profile of the dominant ion, $O_2^+$, changes little. Especially, the density profile of $HCO^+$ is reduced by a factor of about 10 and its peak altitude is lowered by about 40 km relative to a simple diffusion model in which $HCO^+$ ions are assumed to diffuse through non-moving ion background, $O_2^+$. The computed effects of the new code on the Martian nightside models are explained readily in terms of ion velocities that were solved together with ion densities, which were not available from diffusion models. The new code should thus be expected as a significantly improved tool for planetary ionosphere modelling.

A study on convergence and stabilization of SVD damped least squares method in the triplet camera lens-system design (카메라 렌즈 설계에서 직교화 방법에 관한 연구)

  • Jung, Jung Bok;Lee, Won Gin;Kim, Kyung Chan
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.1 no.1
    • /
    • pp.29-39
    • /
    • 1996
  • We studied the method which would determine the appropriate additive damping factor for the damped least sequres(DLS) optimization. We calculated eigenvalues of the product of the Jacobian matrix of error function by using the singular value decomposition(SVD) method. While suitable damping factor was appiled to the additive DLS by using SVD and Gaussian elimination method, the convergence and stability of the optimization process were examined in a triplet-type camera lens-system where the condition number is well conditioned. We compared the convergence and stability of merit function when median, maximum and minimum of eigenvalues were used as a damping factor in the optimization process. When damping factor is median of eigenvalue, the convergence and stability of merit function are more excellent than in the case of two other eigenvalues. Thus, we adopt the median of eigenvalues as an appropriate damping factor. Next, by using SVD and Gaussian elimination method, we compound the convergence and stability of optimization process for triplet-type camera lens-system design. In these two method; triplet-type camera lens-system in which condition number is well conditioned, has little improvement with the combination of DLS and SVD.

  • PDF

Airspeed Estimation of Course Correction Munitions by Using Extended Kalman Filter (확장 칼만필터를 이용한 탄도수정탄의 대기속도 추정)

  • Sung, Jaemin;Kim, Byoung Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.405-412
    • /
    • 2015
  • This paper represents a filter design to estimate the airspeed of a spin-stabilized, trajectory-correctible artillery ammunition. Due to the limited power and space in operational point of view, the airspeed sensor is not installed, and thus the airspeed need to be estimated using limited sensor measurements. The only IMU measurements(three-axis specific forces and angular rates) are used in this application. The extended Kalman filter algorithm is applied since a linear filter can not cover the its wide operational range in airspeed and altitude. In the implementation of the EKF, the state and measurement equations are transformed into the no-roll frame for simple form of Jacobian matrix. The simulation study is conducted to evaluate the performance of the filter under various environment conditions of sensor noise and wind turbulence. In addition, the effect of the choice in filter design parameters, i.e. process error covariance matrices is analyzed on the performance of the estimation of airspeed and angular rates.