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A Study on the Calculation Scheme of Extreme Loading Point and
Nose Curves using Modified N-R and Continuation Method

B o R
(In-Keun Yu)

Abstract - Several voltage instability/collapse problems that have occurred in the
electric utility industry worldwide have gained the attention of engineers and
researchers of electric power systems. This paper proposes an effective calculation
scheme of the extreme loading point and nose curves(P-V curves) using modified
Newton-Raphson(N-R) load flow method and the Continuation Method. This method
provides detail and visual information of the power system voltage profile and
operating margin to operators and planners.

In this paper, a modified load flow calculation method for ill-conditioned power
systems is introduced for the purpose of seeking more precise load flow solutions and
nose curves, and the Continuation Method is also used as a part of the solution
algorithm for the calculation of extreme loading point and nose curves. The
conventional polar coordinate based N-R load flow program is modified to avoid
numerical difficulties caused by the singularity of the Jacobian matrix occuring in the
vicinity of extreme loading point of heavily loaded systems. Application results of the
proposed method to Klos-Kerner 11-bus system and modified IEEE-30-bus system are
presented to assure the usefulness of the approach.

Key Words : Extreme Loading Point (9 Al 4-5}3), Nose Curve(x-$-z # 8},
Continuation Method (14213 ¥), Voltage Instability (A +-8-a-A 43)

1. Introduction
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become one of the most important problems to be
solved urgently in major transmission networks
planning and operation of modern bulk power
systems. A system enters a state of voltage insta-
bility when a disturbance, increase in load, or
system change causes voltage to drop quickly or
drift downward, and operators and automatic
system controls fail to halt the decay. Moreover if
the decay continues unabated, steady-state angu-
lar instability or voltage collapse will occur.

To date, a number of voltage instability/col-
lapse incidents have been reported from the elec-
tric power utilities worldwide. The voltage insta-
bility phenomenon is not new to power system
practising engineers and researchers and the phe-
nomenon was well recognized in radial distribu-
tion systems. It was not, however, a problem that
transmission planners or system operators had to
deal with extensively until recently. It is clear that
much of the voltage collapse phenomena is driven
by the load rather than the generators, that is, it is
recognized that voltage instability and collapse
are associated with relatively slow variations in
load, network and control characteristics. Accord-
ing to some reports on voltage collapse causing
blackouts, frequency and voltage phase angles
evidently did not change appreciably. The collapse
process therefore may be regarded as being
steady-state, rather than transient.

While the basic phenomenon as applied to a
radial feeder is well understood and formulated, it
is not as simple in a large network. This presents
major challenges in establishing sound and simple
analytical procedures, quantitative measures of
proximity to voltage instability, and adequate
operating margins. In recent years, many
researchers from electric power utilities, research
institutes and universities have been carrying out a
lot of studies on the voltage instability/collapse
problem|1]. Several indicators/indices have been
suggested by a number of authors as a measure of
voltage stability and extreme loading point prox-
imity[2~6]. The dynamic behavior of collapses
has recently been analyzed by several authors

[7~12], and some modifications to the conven-
tional load flow method are proposed in a couple
of papers[13, 14],
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Most of the previous studies are not identical
and considered systems under fixed loading/gener-
ation conditions, and the major part of methodol-
ogies is based basically on the conventional load
flow method and Jacobian matrix of power flow
equation or P-V curves. Since most of the voltage
instability /collapse problem becomes problematic
mainly under the heabily loaded conditions or
ill-conditions of power systems, computational
difficulites due to ill-conditions often occur when
ohtaining the power flow solution near the maxi-
mum loading point using the conventional load
flow solution method. The cause of this difficulty
is known to be the coincidence of extreme loading
point with the singular point in load flow solution.

The paper presents an effective approach for
caculating the extreme loading point and the
upper side of the nose curves in order to provide
detail and visual information of the voltage profile
of power systems to operators and planners. In this
paper, a modified load flow calculation method for
ill-conditioned power systems[15] is introduced
for the purpose of seeking more precise load flow
solutions and the upper side of the nose curves.
The Continuation Method[13, 16] is also used as a
part of the solution algorithm for the calculation
of extreme loading point and nose curves. The
conventional polar coordinate based N-R load
flow program is modified to avoid numerical diffi-
culties caused by the singularity of the Jacobian
matrix occurring in the vicinity of the extreme
loading point of heavily loaded systems.

The effectiveness of the proposed approach has
been demonstrated by applying it to several sam-
ple power systems.

2. Modification of N-R load flow method

2.1 Derivation of the optimal multiplier
for polar coordinates formulation
A load flow calculation method for ill-condi-
tioned power systems proposed in the paper[15],
but it is described in rectangular coordinates and it
can be changed in polar coordinates as follows
(See the reference for the details).

Vo= v(xT)— p] T Ax"— 1Fy(AxT)=0 {n
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vs—y(xP)— 1 JTAx" — (P y(AxP) =0 (2)

where,
» . denotes rectangular coordinate quantities
p . denotes polar coordinate quantities

The second and the fourth terms of equation
{1) and (2) are the same, and the third term can be
expressed approximately as

JTAXT =JPAxP +JPAAX? (3)
where, AAx?=1/2[dx"/dx" ({(Ax?)'d*x"/
(dx?)?-Ax®)]
Consider that the vector x* has the form in polar
coordinates load flow equation as

(x?)=[81 |EWf Soreoo] (4)
The AAx? term can be determined to be

(AAx") =[ASAIE/E\. —EA8 /2,
A(32A|E2|/|E2|, "|E2‘A522/2"'] (5)

Which is a vector with a simple structure. Thus
all the terms in equation (2) can be evaluated, and
the same procedure described in (7} ~ (12} of the
reference [15] can be used to find the optimal
multiplier ;.. Once g is found it can be used as in
the paper[15]. to manipulate the step size Ax.

2.2 Application of the optimal multiplier to
the polar coordinates N-R method
In the N- R method, the correction vector Ax” is
obtained basically by triangulating the Jacobian
matrix in the following equation.

JAxP=ys— v{x.") (6)

where,

xe . estimate of x

J . Jacobian matrix
Ax . correction vector

From equation (2), (3) and (), the following
relationships are obtained.

a=lai - anl' =vs— y(x8) (73

b=[bi, =, bp]t=—J"Ax’
=—JPAx?—JPAAx?
=—qa"—JPAAx? (8)

Y )t = —y(AxS) (9)

c=lec,
Then, equation (2) can be written simply as

below
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a+tub+pfe=0 (10

In order to determine the value of 4 in a least
squared sense, the following cost function is con-

sidered.
Minimize : F=1/23"a;+ ub; + . )? (11)

The optimal solution ;* of the above equation
can be obtained by solving the equation below.

OF/du=0 (12)
Namely,
Gt gt gopt S+ g =0 (13)
where,
g=2a.b:), &=2(b +2axc,)
£=32(bic:), =221c/ (14)

The above equation can be solved easily using
the IMSL library, and application procedures of
the optimal multiplier, which is introduced in
order to manipulate the size of correction vector in
this paper, are as follows.

1) Start the conventional polar coordinate N-R
load flow calculation
Compute Ax” by conventional N-R method
Compute @, b and ¢ using equations (7)
~(9)

4) Compute g, g, & and g using equation (14)
5) Equation (13) will be solved using IMSL
library to calculate x*

w B2
NOSE

6) Manipulate the correction vector as follows
AxP=pu* - Ax?

7) Update the variables
x!’(ﬂ+l):xt7(n)+AxP

8) Proceed the same step as conventional N-R
load flow method

2.3 Application results and recommendations
In order to assure the feasibility of the modified
N-R load flow method to the calculation of
extreme loading point and nose curves, study cases
were performed on several power systems and the
following results were obtained.
1) Klos-Kerner (K&K) 11-bus system
a) More precise solutions were obtained
+ P-Mismatch= —0.46[ MW],
@Q-Mismatch=—3.91[MVar]
% P-Mismatch=—0.03[MW],
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¢)-Mismatch= —(.27[MVar]
b) Number of iterations is increased by 3 (from
g to 11)
2) B39M (modified IEEE 30-bus) system
The mismatch and the number of iteration
counts are the same in this case.
3) IEEE 118-bus system
a) The mismatch become slightly bigger.
+ P-Mismatch=0.0[MW1,
¢)-Mismatch=0.0[MVar]
% P-Mismatch=—0.89| MW _,
¢)-Mismatch= - 1.70{MVar]
b) Number of iterations is decreased by 1{from
6 to 5
) TX 1879-bus system{Texas 1879-bus actual

power system)

(=N

a) P mismatch is the same and @-mismatch is
slightly decreased
+ >~ Mismatch=0.01[MW],
()-Mismatch=-0.42[MVar]
% }>-Mismatch=--0.01[MW],
¢)-Mismatch= —(.19[MVar]
b) Number of iterations is decreased by 6 (from
18 to 12)

In the above summary, +, % denote the results
before and after application of the optimal multi-
plier respectively, and the detail explanation on
the value of optimal multiplier and the it's applica-
tion effects are summarized in Table 1 and Fig. 1,

From the test results ;

Table 1 Summary of Optimal Multiplier

# of Decreased IME

Fig. 1 Comparison between # of buses and itera-

tions

1" The above mentioned modification is very

useful from the practical point of view.

21 The method can be used as a detection indi-

cator of the existence of the load flow solu-

tion using the characteristic of optimal multi-

plier. It goes to zero rapidly in the case of no

existing solution, and it has the value of

around 1.0 when there is a solution within

several iterations. Therefore, we do not need

to wait until it diverges in case of no existing

solution.

3) The larger the system size becomes, the more

the number of iterations decrease.

4} In the case that a system is heavily loaded, a

more precise solution will be obtained (refer

[

ITE K&K (A) K&K (B) B30M(A) B30M (B) IEEE118(A} TX1879(A)
1 0.76907 (.66018 0.95602 0.70888 0.90565 0.91521
2 0.80724 0.39952 1.00736 0.62581 0.91755 0.90298
3 0.76749 0.04411 0.99909 0.29690 1.05945 1.00355
4 0.75424 (.00852 1.00000 (.00013 0.99396 (0.96547
5 0.76309 0.00264 0.00000 0.99877 (0.99912
6 0.78297 0.00094 0.99791
7 0.81221 0.00036 0.94758
8 0.85916 0.00014 0.99571
9 0.92942 0.00006 0.92967

10 0.98571 (.00001 0.99823

11 0.99955 0.00000 0.98009

12 | 0.99997

(A) : convergent case, (B) ! divergent case
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to study results of Klos-Kerner system),

5) This method gives a solution which is very
close to the extreme loading point but it is
not the exact point. So it is not enough to
apply this method for the calculation of
extreme loading point and nose curves.

6) Since the modified method can be easily
incorporated into the conventional N- K load
flow program (in rectangular/or polar coor-
dinates), all current load flow programs
should be modified to incorporate the use of
this" technique in order to obtain a more
precise solution and decrease the number of
iteration counts.

7) This method will be used as a basic tool for
the calculation of extreme loading point and
nose curves in this study.

3. Calculation of extreme loading point
and nose curves

3.1 Formulation of the problem using
the Continuation Method

The loading/generation scenario from operating

point to extreme point is indispensable in this
approach, and the basic assumptions are as fol-
lows.

1) The power factor at each bus is kept con-
stant independently of load demand or the
active power of load.

2) The load demand at each bus is increased at
the same rate from the base load.

3) The active power output of each generator is
also increased at the same rate except at the
slack bus, the increment of transmission loss
is absorbed by the slack generator.

4) The magnitude of generator bus voltage is
kept constant within it's regulating limits,
and after violation of the limits the bus is
changed to P-Q bus.

5) The increasing rate will be determined by the
autoscaling factor “a”.

According to the above mentioned loading/gen-

eration scenario from a base load to an extreme
load, the load/generation increasing formula is
defined as follows.
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Ys(t): YSO+tYd (15)

where,

Y., . specified value of base load and generation

Y. : loading/generation pattern

¢t . scalar parameter (increasing rate)

Y.=[AP:, AP, AQ]' is arbitrarily selected.
The scalar parameter ¢ is a scale of demand
growth which is used as the horizontal axis in the
nose curves.

By substituting equation(15) the load flow equa-
tion, an augmented equation as (16} is obtained.

Hx, t)=Y(x)— Yi(t)
=Y(x)— Yeo—tYa=0 (16)

The solution of H(x, t)=0 also provides a load
flow solution for specified value Yi(¢). To esti-
mate a solution{x+Ax, fh+Atf) that adjoins a
known solution (x,, %), the linearized relations
between Ax and At should satisfy following equa-
tion.

H(A‘o““AJ\', to‘{"Af):H(XOs l‘())
+0H /ox Ax+0H/ot-At=0 (17)

In order for the above equation to be completed,
the following relationship must be satisfied.

OH/ox Ax+0H/dt-At=0 (18)
From equations (16) and (18)
JAx—YiAt=0 (19)

It might be a good idea to solve the conventional
load flow problem by setting the specified value Y,
= Yi(to+A¢) and the initial condifion xp=2xo+Ax.
It is not enough, however, to overcome the numeri-
cal difficulties near the extreme loading point. In
this paper, the Continuation Method is introduced
to avoid the difficulties.

Generally, the load flow equation of power sys-
tems is represented by nonlinear simultaneous
equation.

F(x)=0 (20)

It is solved by Newton like methods starting
from an arbitrarily selected initial value x,, and
the convergency properties are not always guar-
anteed.

Under the premise that equation (20) will be
satisfied eventually, (»--1) equations are embed-
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ded between the eugation whose obvious solution
is known and the equation (20) which should be
solved, the series of solutions will be obtained
gradually.

For example, an equation corollary

f(x)=F(x0) (21)

has a solution (0)=x, where 2(0) means an
obvious solution which is determined by a physi-
cally reasonable starting point x, (it will be one of
the load flow solution in this paper). Let's consider
an equation corollary which has ¢ as a parameter.

FO) = -1 (x0)=0 (22)

In the above equation, if =0, it is the same as
eqation (21), and when ¢ =1, it will be the same as
equation (20) . Let the solutions for various ¢t =1/#,
2/n, . (n—1)/nand 1 be «(1/n), al2/n), -,
alln—1)/#) and a(1), the a(1) is the very desired
solution. So the solutions of the euqation for t=
m/n and the euqation for t=(m~+1)/n, alm/n)
and a((m+1)/n) are very closely located that the
solution a((m+1)/n) is easily obtained using
Newton like methods starting from g(s/#n). The
purpose of this equation is to trace a curve of
solutions from an arbitrary initial condition x, at ¢
=( to a desired solution x at #=1. In this paper,
however, {=1 has no special meaning and it will
be substituted for the extreme loading points of
the systems.

The Continuation Method is generalized as fol-
lows based on the concepts mentioned above, For
the purpose of brief description of the Continua-
tion Method(refer to reference{16] for the

details}, besides equation (20), another equation-

of which a solution is known will be defined as

(23).
singular
point
o c2 c4
cl
o m

X

-
3
>

Fig. 2 Several curves of k(x, 1)=0
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g(x)=0 (23)

The equation (23) is the solution of the hase
load condition and will be the starting point of the

continuation method. Let’s cosider a function
which connects between f and g successively and

has (n+1) variables.

h(x, t)=0, te[0, 1] (24)
#(x, 0)=g(x), hlx, 1)=/(x)

The points which satisfy the equation (24) in the
space (x, t) is able to produce several continuous
curves like Fig. 2,

From equation (24), a differential equation of
the curves is

Ho(x, )dt/ds+ 2 Hx, t)dx;/ds=0 (25)

where,
s . parameter along the curves, and the solution
point on the curve will be described as x(s), #(s).

Hox, t)=0ah(x. t)/0t, H{x, t)=0ah{x, t)/ox,
and a condition, for example.
(dt/ds)y+2dx;/ ds)*=1 (26)

may be imposed for the purpose of finding the
solution which exists on the curve (see the Fig. 3).
The value 1 in the eugation has no particular
meaning and it can be selected arbitrarily as “4” in
equation (28). The solution procedure of eugation
(24) is as follows.
1) Set x(0)=x0, #(0)=0 using the solution of
&(x)=0
2) If x(s) and #(s) are known, x(s+As) and ¢(s
+As) will be determined using equations

t
A (a' 1)

[x(s).t(s)] [x(s+48),i(s+ )]

t=0 (x°,0) >
X1

Fig. 3 Concept of the Continuation Method
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below.
Ho(x(s), t(sHAt+ 2 Hx(s), H{sNAx;=0 (27)
A+ ZT(Ax)P=(AsY=k (28)

The condition described in the above equation
correspond to the condition of (26). The value of &
should be selected manually to limit size of the
vecotr(Ax, At). If f is greater than the region in
which the linearization is valid, numerical instabil-
ities may appear in the later process. Conversely,
if 4 is set to a small value, the size of the step
toward the extreme point is small. The k is con-
stant from ¢=0 through ¢ = fnax along the locus of
H(x, #)=0. The step size A¢, however, varies
automatically during the iterative process to sat-
isfy equation(28;.

3) The solution point (x(s)+Ax, t(s)+A¢) is
not exactly on the curve but in the vicinity of
the curve. Thus, solve the following two
equations simultaneously by the Newton-
Raphson method and the desired solution is
finally obtained.

hx(s+As), H{s+As))=0 (29)
At[t(s+As)—(t(s)+A1)] (30)
+3Ax s +As)— (ai(s)+Ax,;)]=0

Equation (30) means the hyperplane that is per-
pendicular to the vector(Ax, At), and also crosses
at (x(s)+Ax, #{(s)+At). Fig. 3 illustrates this con-
cept. The size fo the Jacobian matrix of this
problem is larger than that of the conventional
load flow problem by only one dimension as shown
in equation(31).

a7l

(31)

3.2 Calculation procedures of the extreme

loading point and nose curves

In order to ovoid the instability caused by the
relatively light loaded condition of a system, the
original method for calculation of extreme loading
points[15] is modified to incorporate the modified
N-R load flow method. Using the proposed
method, the solution procedure is very stable and
feasible solutions are obtained always regardless
of the loading situation of the power systems.

Calculation procedures of the proposed method
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are as follows.

stepl) Solve a load flow problem to obtain the
solutions x( V, @) for the base load condi-
tion (#=0) using the modified (optimal
multiplier introduced) N-R load flow
method.

step2) Set loading/generation pattern Y, and
power factor of the system according to
the operation guidance, and select an
appropriate value of the parameter “4”

(b & k).

step3) Calculate At using equation (32) ~ (34},
Az, =]V, (32}
a=[k/2Az" (33)
At=a (34)

step4) Increase loading/generation value using
the scenario and A¢.

step5) Solve the load flow problem by the
modified polar coordinate based N-R
method and store the intermediate solu-
tion (x(s+As), t(s+As)), and update x
and ¢.

step6) If the solution is obtained successfully,
go back to step 3. Otherwise, that is,
once divergency is occurred at the vicin-
ity of extreme loading points, go to the
next step (switch the solution routine to
the Continuation Method).

step7) Calculate Ax and Af using equation (35)

~ (38},

Az;=]7'Y, (35)
a=[k/2 A2V (36)
Ax;=Az-a (37
dt=a (38)

step8) Solve equations (29) and (30) by the
conventional N-R method using x, ¢, Ax
and A¢. The exact solution (x(s+As),
t(s+As)) will be obtained.

step9) Store the intermediate solution (x(s
+As), t(s+As)), and update x and ¢.

stepl() If At>e¢, go back to step 7, Otherwise
stop. The terminal point Y. (¢) is the
extreme loading point and the nose
curves will be drawn using the interme-
diate solutions.
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Fig. 4 Upper side of nose curves of Klos-Kerner
system

4, Study cases and results

This effectiveness of the proposed approach has
been demonstrated by applying it to several sam-
ple power systems. The study cases and results are
as follows.

4.1 Klos-Kerner(K&K) 11-bus system
This sample system is well known as a heavily
loaded system.
1) Set system conditions
+=1.0 - Lg, where [, is system base load
Power factor=0.98
2} Selection of the parameter “};”
k1=0.01, £2=0.001
Fig. 4 shows the extreme loading point and the
upper side of nose curves of the K&K 11-bus
system and the buses are selected arbitrarily in

= L
5 W
a
s
T s |
b
Q
=
[
> os}

8.7 [

as |-

o5 " . N N . .

o 10 20 %0 40 50 o« 70
Loading/Generating Rate(f%])

—a-bue-07 _, bus-21 - bus-240 _,_ bus-260 _, bue-200

Fig. 5 Upper side of nose curves of B39M system
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Fig. 6 A picture of the visual information from
graphic monitor( [ }
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Fig. 7 A picture of the visual information from
graphic monitor( | }

Table 2 Upper side information of nose curves
of K&K 11-bus system

"No.| % | & |BUS-04]BUS-07|BUS-11
1| .0000000| 0000000 | 8264123 9088123

.8996321
2 |.0064783|.0000648 .8263413T.908617'2 .8976016

B S

01237491 .0000590 | 8255628 | .9082732 8968994
+.0176900 ) .0000532 | . 8247836 907929(

.0224239 0000473 | 8240038 | 19075867 | . 8954716

—

0265764 | .0000415 | .8232233 | 9072442 | . 8947599 |
[ 03014(7 000035” .8224421.9069022
03313ﬁ 0000299 821660% (165607

.8940474
.8933340
.8926199
I

0373756 | .0000183 _82[’1094%058791 .89190501

03554721 .0000241 ;. 8208778 .9)62197

!

.0386231.0000125 .8]93108 .9055392 .8911892'

0392900 | . 0( )61&185264 9051996{890479 1
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this test example. Power factor=0.95
2) Selection of the parameter “%”
4.2 B33M(Modified IEEE 30-bus) system k1=0.005, /=0.001
1) Set system conditions Fig. 5 shows the extreme loading point and the
Y+=1.0- L, where L, is system base load upper side of nose curves of the B39M system and

Table 3 Upper side information of nose curves of B39M system

No. £(%) BUS-7 BUS-21 BUS-240 BUS-260 BUS-290
1 0.0000000 1.0063212 .9834342 .9823213 9917625 .9998231
2 2.3256900 1.0061390 .9832041 .9821303 .9915503 .9996069
3 4.6859260 1.0055270 .9795998 .9761868 .9861901 9961879
4 7.0716500 1.0049000 .9758763 .9700388 .9806595 .9926881
5 9.4810600 1.0042570 .9720333 .9636812 .9749535 .9891070
6 11.9121800 1.0035980 .9680652 .9571044 -9690663 .9854456
7 14.3628400 1.0029240 .9639692 .9503015 .9629931 .9817030
8 16.8306700 1.0022340 .9597402 .9432611 .9567256 .9778811
9 19.3130700 1.0015280 .9553744 19359744 .9502584 .9739801

10 21.8072300 1.0008060 .9508694 19284333 .9435858 .9700021

11 24.3100900 1.0000690 .9462173 9206226 .9366984 .9659489

12 26.8183000 .9993154 .9414160 .9125329 .9295903 .9618227

13 293282600 .9985465 .9364597 9041504 .9222518 .9576271

14 31.8360700 .9977619 .9313423 .8954598 .9146748 .9533660

15 34.3374600 .9969617 .9260612 8864487 .9068513 .9490438

16 36.8278500 .9960078 .9203740 8768488 .8986546 .9446660

17 39.1000000 .9946837 .9142519 . 8669204 .8905191 .9406047

18 41.3379400 .9929962 .9073631 8560065 .8818532 .9365388

19 43.5318900 19912814 .9002786 .8447020 8729430 .9324872

20 45.6754000 .9895391 .8929850 .8329747 .8637763 .9284635

21 47.7414600 9877716 .8854837 . 8208064 .8543502 .9244827

22 49.7825900 .9859794 .8777639 .8081604 .8446528 .9205619

23 51.7306000 .9841630 .8698156 .7949961 8436725 9167219

24 53.5965000 .9823232 8616263 7812639 .8243957 .9129844

25 55.3702900 .9804621 8531877 7669103 8138112 .9093759

26 57.0407500 .9785795 .8444774 .7518517 .8028958 .9059260

27 58.5949700 9765750 .8354707 .5359866 .7916260 .9026690

28 60.0177500 9747468 .8261236 .7191573 .7799584 .8996467

29 61.2905300 .9727904 .8163754 .7011408 .7678324 .8969090

30 62.3896400 .9707913 .8060905 .6815196 .7551146 8945183

31 63.2823900 .9687022 7949187 .6593334 7414386 .8925571

32 63.9164700 .9661835 . 7807000 .6293725 .7243816 8911539

33 63.9626400 .9659729 7794623 6266586 .7229219 .8910928

34 640007600 .9657929 7782214 6239174 .7214636 .8910424

35 64.0306300 .9655537 7769771 .6211481 .7200068 .8910029

36 64.0519900 .9653453 7757296 .6183499 .7185521 .8909746

37 64.0646300 = .9651376 7744789 .6155216 .7170997 .8909580

38 64.0682600 9649308 7732249 .6126624 .7156501 .8909531

720
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the buses are also selected arbitrarily in this test
example.

The numerical outputs are summarized in Table
2 and Table 3 respectively, and Fig. 6 and Fig. 7
are some picture examples of visual information
which will be provided to operators/planners of
power systems through on-line color graphic moni-

tor.
5. Conclusions

This paper presents an effective approach for
calculating the extreme loading point and the
upper side of nose curves in order to provide detail
and visual information on the V()ltgge profile of
power systems to operators and planners.

The obtained conclusions are as follows.

1) The modified N-R load flow calculation
method for ill-conditioned power systems is
introduced for the purpose of seeking more
precise load flow solutions and the upper side
information of nose curves, that is, the con-
ventional polar coordinate based N-R load
flow program is modified to avoid numerical
difficulties caused by the singularity of the
Jacobian matrix occurring in the vicinity of
the extreme loading point of heavily loaded
power systems.

The obtained results are not only more pre-
cise but also the larger the system size
becomes, the more the number of iterations

2)

decrease, which is very interesting and un-
expected but beneficial phenomenon.

3) The method can be used as a detection indi-
cator of load Ifow solution existence using
the characteristic of optimal multiplier, and
it is used as a basic tool for the calculation of
extreme loading point and nose curves.

4) The Continuation Method is also used as a
part of the solution algorithm to obtain the
exact solution of extreme loading point and
nose curves.

55 The critical loading point and the nose
curves obtained by the method will be very
useful information to power system opera-
tors and planners, and the visual information
can be used as an important message crea-

BEN-RE BB EE OB BMNATE U Nose Curve WEHZ HE

tion tool of Operator Training Simulator
(0TS,
The proposed method can be used as a tool

6)
for an on-line voltage security monitoring
systems.

The information on the extreme loading

-2

point and voltage profile might be applied to
Automatic Generation Control Simulator
(AGCS) through the appropriate feedback
procedure. This is a field for further study.
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