• 제목/요약/키워드: jacobian

검색결과 453건 처리시간 0.026초

A HYBRID SCHEME USING LU DECOMPOSITION AND PROJECTION MATRIX FOR DYNAMIC ANALYSIS OF CONSTRAINED MULTIBODY SYSTEMS

  • Yoo, W.S.;Kim, S.H.;Kim, O.J.
    • International Journal of Automotive Technology
    • /
    • 제2권3호
    • /
    • pp.117-122
    • /
    • 2001
  • For a dynamic analysis of a constrained multibody system, it is necessary to have a routine for satisfying kinematic constraints. LU decomposition scheme, which is used to divide coordinates into dependent and independent coordinates, is efficient but has great difficulty near the singular configuration. Other method such as the projection matrix, which is more stable near a singular configuration, takes longer simulation time due to the large amount of calculation for decomposition. In this paper, the row space and the null space of the Jacobian matrix are proposed by using the pseudo-inverse method and the projection matrix. The equations of the motion of a system are replaced with independent acceleration components using the null space of the Jacobian matrix. Also a new hybrid method is proposed, combining the LU decomposition and the projection matrix. The proposed hybrid method has following advantages. (1) The simulation efficiency is preserved by the LU method during the simulation. (2) The accuracy of the solution is also achieved by the projection method near the singular configuration.

  • PDF

QR분해와 외란관측기를 이용한 시각구동 방법 (A Novel Visual Servoing Method Using QR Decomposition and Disturbance Observer)

  • 이준수;서일홍;유범재;오상록
    • 제어로봇시스템학회논문지
    • /
    • 제6권6호
    • /
    • pp.462-470
    • /
    • 2000
  • This paper proposes a visual servoing method based on QR decomposition and disturbance observer. The QR decomposition factors the image feature Jacobian into a unitary matrix and an upper triangular matrix. And it is shown that several performance indices such as measurement sensitivity of visual features, sensitivity of the control to noise and controllability can be improved for any general image feature Jacobian by QR decomposition and disturbance observer. To show the validity of the proposed approach, visual servoing with stereo vision is carried out for a Samsung FARAMAN 6-axis industrial robot manipulator.

  • PDF

쟈코비안 행렬의 마이너(Minor)에 기초한 여유자유도 로봇의 동력학적 제어 (Dynamic Control of Redundant Manipulators based on the Minors of Jacobian Matrix)

  • 정원지;정완균;염영일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.767-770
    • /
    • 1991
  • For the control of redundant manipulators, conventional dynamic control methods of local torque optimization showed the instability which resulted in physically unrealizable torque requirements. In this paper, a new dynamic control method which is based on the concept of aspects is proposed. The proposed method starts with the basic understanding of the minors in the Jacobian matrix. It was shown by computer simulations that the proposed method demonstrates a drastic reduction of torque loadings at the joints in the tracking motion of a long trajectory, and thus guarantees the stability of joint torque.

  • PDF

비정렬 격자계에서 Block LU-SGS 기법의 개선에 관한 연구 (Improvement on Block LU-SGS Scheme for Unstructured Mesh)

  • 김주성;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 춘계 학술대회논문집
    • /
    • pp.38-44
    • /
    • 2001
  • An efficient Gauss-Seidel time integration scheme is developed for solving the Euler and Navier-Stokes equations on unstructured meshes. Roe's FDS is used for the explicit residual computations and van Leer's FVS for evaluating implicit flux Jacobian. To reduce the memory requirement to a minimum level, off-diagonal flux Jacobian contributions are repeatedly calculated during the Gauss-Seidel sub-iteration process. Computational results based on the present scheme show that approximately $15\%$ of CPU time reduction is achieved while maintaining the memory requirement level to $50-60\%$ of the original Gauss-Seidel scheme.

  • PDF

Dynamics and Control of 2 DOF 5-bar Parallel Manipulator with Closed Chain

  • Chung, Young-Hoog;Lee, Jae-Won;Sung, Yoon-Gyeoung;Joo, Hae-Hoo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권1호
    • /
    • pp.5-10
    • /
    • 2001
  • A method is proposed to obtain the Jacobian matrix of the 5 -bar parallel manipulator by employing the orthogonality between position and velocity vectors of rotating rigid-body around a fixed point. The dynamics of the 5-bar parallel manipulator is analyzed and utilized to design the computed-torque controller by developing a transformation matrix of the passive joints with respect to the active ones. In experimental demonstration, it shows that high-speed and accuracy tasks are performed by the proposed computed-torque control.

  • PDF

케이싱 오실레이터의 특이점 해석 (The Singularity Analysis of the Casing Oscillator)

  • 남윤주;배형섭;박명관
    • 대한기계학회논문집A
    • /
    • 제28권1호
    • /
    • pp.100-108
    • /
    • 2004
  • In this paper, the new casing oscillator, which is a construction machine and which structure is similar to that of a parallel manipulator with redundancy, is proposed. The singularity analysis of this machine is performed by two different methods. First, the singularities are found by the numerical method at configurations where the rank of the Jacobian matrix becomes deficient. The singularities are outside the workspace. To investigate the physical information on these configurations, the singularities are examined by the geometric method at configurations where the casing oscillator cannot resist the external forces and moments applied to the upper platform due to losing static equilibrium. The results of the geometric method are the same as those of the numerical method. It proves that the new casing oscillator is free from the singularity, which causes serious problems to a parallel manipulator.

미소운동 변환을 이용한 자율주행 자전거의 기구학 모델 (Kinematic Modeling for Autonomous Bicycle Using Differential Motion Transformation)

  • 이수영
    • 로봇학회논문지
    • /
    • 제8권4호
    • /
    • pp.292-297
    • /
    • 2013
  • This paper presents a new method of kinematic modeling for autonomous bicycle by using the differential motion transformation. Kinematic model is indispensable to trajectory planning and control for an autonomous mobile robot. The conventional methods of kinematic modeling for an autonomous bicycle depend on intuition by geometry. On the contrary, the proposed method in this paper is based on the systematic differential motion transformation, thus applicable to various types of autonomous bicycles. The differential motion transformation gives Jacobian between two coordinate frames and the velocity kinematics as a result.

여유 자유도 로봇의 최적 자세 제어 (Optimal configuration control for redundant robot manipulators-manipulability-based approach)

  • 이지홍;이미경;이영일;유준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.739-742
    • /
    • 1996
  • Several figures representing velocity transmission from joint space to task space are analyzed and compared with each other. The figures include velocity ellipsoid derived from Jacobian matrix, scaled velocity ellipsoid derived from normalized joint velocities, polytope derived by numerical scaling, and polytopes derived by linear combinations of Jacobian column vectors. The results show that the optimal directions given by the measures are not the same and the conventional velocity ellipsoid is not good choice as optimization measure as far as the moving direction is concerned. Simulation examples for 3 d.o.f. redundant robot manipulators in 2-dimensional task space are given for comparison study.

  • PDF

Study on Development of a machining robot using Parallel mechanism

  • Park, Kun-Woo;Kim, Tae-Sung;Lee, Min-Ki;Kyung, Jin-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.638-642
    • /
    • 2005
  • This research develops the robot for the machining work. For machining work(cutting, milling, grilling, etc.), a robot manipulator is constructed by combining a parallel and a serial mechanism to increase stiffness as well as enlarge workspace. Based on the geometric constraints, this paper develops the formulation for inverse/direct kinematics and Jacobian to design and control a robot. Workspace is also analyzed to prove the advantage of the proposed robot.

  • PDF

신경회로망의 쟈쿄비안을 이용한 feedforward/feedback 병합제어기 설계 (The combined feedforward/fedback controller design using jacobians of neural network)

  • 조규상;임제택
    • 전자공학회논문지B
    • /
    • 제33B권2호
    • /
    • pp.140-148
    • /
    • 1996
  • This paper proposes a combined feedforward/feedback controller which uses jacobians of neural network. The jacobians are calculated form the neural network that identifies the nonlinear plant, which are used for designing a jacobian controller and for training a neural network controller. Normally, it takes much time to train the neural network controller. Combining the neural and the jacobian controller, it can be a stable controller from the beginning of training phase of neural network, and it can be implemented as a learning-while-functioning controller. Simulated resutls for the proposed controller show its effectiveness and better performances.

  • PDF