• Title/Summary/Keyword: iterative regularization

Search Result 58, Processing Time 0.023 seconds

Regularized Iterative Image Restoration with Relaxation Parameter (이완변수를 고려한 영상의 정칙화 반복 복원)

  • 홍성용;이태홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.1
    • /
    • pp.91-99
    • /
    • 1994
  • We proposed the regularized iterative restoration method considering relaxation parameter and regularization paramenter in order to restore the noisy motion-blurred images. We used (i-H) as a regularization operator and these two kinds of constraints were applied while conventional regularization iterative restoration method proposed by Jan Biemond et al used the 2-D Laplacian filter and a predetermined regularization parameter value and relaxation parameter to 1. Through the experimental results, we showed better results compared with those by a conventional method and or regularized iterative restoration method just considering only a regularization parameter. These two kinds of constratints have good effects when applied into the regularized iterative restoration method for noisy motion-blurred images.

  • PDF

Iterative Image Restoration using Adaptive Directional Regularization (적응적인 방향성 정칙화 연산자를 이용한 반복 영상복원)

  • Kim, Yong-Hun;Shin, Hyoun-Jin;Yi, Tai-Hong
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.10
    • /
    • pp.862-867
    • /
    • 2006
  • To restore image degraded by blur and additive noise in the optical and electrical system, a regularized iterative restoration is used. A regularization operator is usually applied to all over the image without considering the local characteristics of image in conventional method. As a result, ringing artifacts appear in edge regions and the noise is amplified in flat regions. To solve these problems we propose an adaptive regularization iterative restoration considering the characteristic of edge and flat regions using directional regularization operator. Experimental results show that the proposed method suppresses the noise amplification in flat regions, and restores the edge more sharply in edge regions.

A Mixed Norm Image Restoration Algorithm Using Multi Regularized Parameters (다중 정규화 매개 변수를 이용한 혼합 norm 영상 복원 방식)

  • 김도령;홍민철
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.489-492
    • /
    • 2003
  • In this paper, we propose an iterative mixed norm image restoration algorithm using multi regularization parameters. A functional which combines the regularized l$_2$ norm functional and the regularized l$_4$ functional is proposed. The smoothness of each functional is determined by the regularization parameters. Also, a regularization parameter is used to determine the relative importance between the regularized l$_2$ functional and the regularized l$_4$ functional. An iterative algorithm is utilized for obtaining a solution and its convergence is analyzed.

  • PDF

A Mixed Norm Image Restoration Algorithm Using Multi Regularization Parameters (다중 정규화 매개 변수를 이용한 혼합 norm 영상 복원 방식)

  • Choi, Kwon-Yul;Kim, Myoung-Jin;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11C
    • /
    • pp.1073-1078
    • /
    • 2007
  • In this paper, we propose an iterative mixed norm image restoration algorithm using multi regularization parameters. A functional which combines the regularized $l_2$ norm functional and the regularized $l_4$ norm functional is proposed to efficiently remove arbitrary noise. The smoothness of each functional is determined by the regularization parameters. Also, a regularization parameter is used to determine the relative importance between the regularized $l_2$ norm functional and the regularized $l_4$ norm functional using kurtosis. An iterative algorithm is utilized for obtaining a solution and its convergence is analyzed. Experimental results demonstrate the capability of the proposed algorithm.

Image restoration by Adaptive Regularization Considering the Edge Direction (윤곽 방향을 고려한 적응 정칙화 영상 복원)

  • 김태선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.9B
    • /
    • pp.1588-1595
    • /
    • 2000
  • To restore image degraded by out-of-focus blur and additivie noise a regularized iterative restoration is used. In concentional method, regularization is usually applied to all over the image without considering the local characteristics of image. As a result, ringing artifacts appear in edge regions and the noise amplification is introduced in flat regions. To solve this problem we propose an adaptive regularization iterative restoration using directional regularization operator considering edges in four directions and the regularization operator with on direction for flat regions. We verified that the proposed method show better results in the suppression of the noise amplification in flat regions, and introduced less ringing artifacts in edge regions. As a result it showed visually better image and improved better ISNR further than the conventional methods.

  • PDF

Application of Matrix Adaptive Regularization Method for Human Thorax Image Reconstruction (인체 흉부 영상 복원을 위한 행렬 적응 조정 방법의 적용)

  • Jeon, Min-Ho;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.33-40
    • /
    • 2015
  • Inverse problem in electrical impedance tomography (EIT) is highly ill-posed therefore prior information is used to mitigate the ill-posedness. Regularization methods are often adopted in solving EIT inverse problem to have satisfactory reconstruction performance. In solving the EIT inverse problem, iterative Gauss-Newton method is generally used due to its accuracy and fast convergence. However, its performance is still suboptimal and mainly depends on the selection of regularization parameter. Although, there are few methods available to determine the regularization parameter such as L-curve method they are sometimes not applicable for all cases. Moreover, regularization parameter is a scalar and it is fixed during iteration process. Therefore, in this paper, a novel method is used to determine the regularization parameter to improve reconstruction performance. Conductivity norm is calculated at each iteration step and it used to obtain the regularization parameter which is a diagonal matrix in this case. The proposed method is applied to human thorax imaging and the reconstruction performance is compared with traditional methods. From numerical results, improved performance of proposed method is seen as compared to conventional methods.

THE CONSTRAINED ITERATIVE IMAGE RESTORATION ALGORITHM USING NEW REGULARIZATION OPERATORS

  • Lee, Sang-Hwa;Lee, Choong-Woong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1997.06a
    • /
    • pp.107-112
    • /
    • 1997
  • This paper proposes the regularized constrained iterative image restoration algorithms which apply new space-adaptive methods to degraded image signals, and analyzes the convergence condition of the proposed algorithm. First, we introduce space-adaptive regularization operators which change according to edge characteristics of local images in order to effectively prevent the restored edges and boundaries from reblurring. And, pseudo projection operator is used to reduce the ringing artifact which results from extensive amplification of noise components in the restoration process. The analysed algorithm is stable convergent to the fixed point. According to the experimental results for various signal-to-noise ratios(SNR) and blur models, the proposed algorithms other methods and is robust to noise effects and edge reblurring by regularization especially.

  • PDF

Regularization of Shape from Shading Problem Using Spline Functional (스플라인 범함수에 의한 명암에서 형상복구 문제의 정즉화)

  • 최연성;최종수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.12
    • /
    • pp.1532-1540
    • /
    • 1988
  • Shape from shading problem, such as other most early visions, is ill-posed problems, which can be solved by the use of regularization methods. This paper proposes the three kinds of stabilizer for the regularization. These are integrability constraints and spline functionals. Parallel iterative schemes are derived in the form of the finite difference approximation. Experimental results, show that the average error in surface orientation is less than 5%.

  • PDF

New Image Processing Methodology for Noisy-Blurred Images (잡음으로 훼손된 영상에 대한 새로운 영상처리방법론)

  • Jeon, Woo-Sang;Han, Kun-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.965-970
    • /
    • 2010
  • In this paper, a iterative image restoration method is proposed to restore for noisy-blurred images. In conventional method, regularization is usually applied to all over the without considering the local characteristics of image. As a result, ringing artifacts appear in edge regions and the noise amplification is introduced in flat regions. To solvethis problem we proposed an adaptive regularization iterative restoration using directional regularization operator considering edges in four directions and the regularization operator with no direction for flat regions. We verified that the proposed methods showed better results in the suppression of the noise amplification in flat regions, and introduced less ringing artifacts in edge regions. As a result it showed visually better image and improved better ISNR further than the conventional methods.

Sparse-View CT Image Recovery Using Two-Step Iterative Shrinkage-Thresholding Algorithm

  • Chae, Byung Gyu;Lee, Sooyeul
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1251-1258
    • /
    • 2015
  • We investigate an image recovery method for sparse-view computed tomography (CT) using an iterative shrinkage algorithm based on a second-order approach. The two-step iterative shrinkage-thresholding (TwIST) algorithm including a total variation regularization technique is elucidated to be more robust than other first-order methods; it enables a perfect restoration of an original image even if given only a few projection views of a parallel-beam geometry. We find that the incoherency of a projection system matrix in CT geometry sufficiently satisfies the exact reconstruction principle even when the matrix itself has a large condition number. Image reconstruction from fan-beam CT can be well carried out, but the retrieval performance is very low when compared to a parallel-beam geometry. This is considered to be due to the matrix complexity of the projection geometry. We also evaluate the image retrieval performance of the TwIST algorithm -sing measured projection data.