• Title/Summary/Keyword: iterative learning

Search Result 298, Processing Time 0.024 seconds

A fuzzy SOC based pressure tracking controller design for hydroforming process (Fuzzy SOC를 이용한 하이드로 포밍 고정의 압력제어기 설계)

  • 김문종;박희재;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.350-355
    • /
    • 1990
  • A pressure tracking of hydroforming process is considered in this paper. To account for nonlinearities and uncertainty of the process. A fuzzy SOC based iterative learning control algorithm is proposed. A series of experimentals were performed for the pressure tracking control of the process. The experimental results show that regardless of inherent nonlinearties and uncertainties associated with hydraulic system. A good pressure tracking control performance is obtained using the proposed fuzzy learning control algorithm.

  • PDF

Learning Generative Models with the Up-Propagation Algorithm (생성모형의 학습을 위한 상향전파알고리듬)

  • ;H. Sebastian Seung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.327-329
    • /
    • 1998
  • Up-Propagation is an algorithm for inverting and learning neural network generative models. Sensory input is processed by inverting a model that generates patterns from hidden variables using top-down connections. The inversion process is iterative, utilizing a negative feedback loop that depends on an error signal propagated by bottom-up connections. The error signal is also used to learn the generative model from examples. the algorithm is benchmarked against principal component analysis in experiments on images of handwritten digits.

  • PDF

NETLA Based Optimal Synthesis Method of Binary Neural Network for Pattern Recognition

  • Lee, Joon-Tark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.216-221
    • /
    • 2004
  • This paper describes an optimal synthesis method of binary neural network for pattern recognition. Our objective is to minimize the number of connections and the number of neurons in hidden layer by using a Newly Expanded and Truncated Learning Algorithm (NETLA) for the multilayered neural networks. The synthesis method in NETLA uses the Expanded Sum of Product (ESP) of the boolean expressions and is based on the multilayer perceptron. It has an ability to optimize a given binary neural network in the binary space without any iterative learning as the conventional Error Back Propagation (EBP) algorithm. Furthermore, NETLA can reduce the number of the required neurons in hidden layer and the number of connections. Therefore, this learning algorithm can speed up training for the pattern recognition problems. The superiority of NETLA to other learning algorithms is demonstrated by an practical application to the approximation problem of a circular region.

A study on The Real-Time Implementation of Intelligent Control Algorithm for Biped Robot Stable Locomotion (2족 보행로봇의 안정된 걸음걸이를 위한 지능제어 알고리즘의 실시간 실현에 관한 연구)

  • Nguyen, Huu-Cong;Lee, Woo-Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.224-230
    • /
    • 2015
  • In this paper, it is presented a learning controller for repetitive walking control of biped walking robot. We propose the iterative learning control algorithm which can learn periodic nonlinear load change ocuured due to the walking period through the intelligent control, not calculating the complex dynamics of walking robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of intelligent control to biped robotic motion is shown via dynamic simulation with 25-DOF biped walking robot.

Behavior-based Learning Controller for Mobile Robot using Topological Map (Topolgical Map을 이용한 이동로봇의 행위기반 학습제어기)

  • Yi, Seok-Joo;Moon, Jung-Hyun;Han, Shin;Cho, Young-Jo;Kim, Kwang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2834-2836
    • /
    • 2000
  • This paper introduces the behavior-based learning controller for mobile robot using topological map. When the mobile robot navigates to the goal position, it utilizes given information of topological map and its location. Under navigating in unknown environment, the robot classifies its situation using ultrasonic sensor data, and calculates each motor schema multiplied by respective gain for all behaviors, and then takes an action according to the vector sum of all the motor schemas. After an action, the information of the robot's location in given topological map is incorporated to the learning module to adapt the weights of the neural network for gain learning. As a result of simulation, the robot navigates to the goal position successfully after iterative gain learning with topological information.

  • PDF

Development of Artificial Intelligence Constitutive Equation Model Using Deep Learning (딥 러닝을 이용한 인공지능 구성방정식 모델의 개발)

  • Moon, H.B.;Kang, G.P.;Lee, K.;Kim, Y.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.4
    • /
    • pp.186-194
    • /
    • 2021
  • Finite element simulation is a widely applied method for practical purpose in various metal forming process. However, in the simulation of elasto-plastic behavior of porous material or in crystal plasticity coupled multi-scale simulation, it requires much calculation time, which is a limitation in its application in practical situations. A machine learning model that directly outputs the constitutive equation without iterative calculations would greatly reduce the calculation time of the simulation. In this study, we examined the possibility of artificial intelligence based constitutive equation with the input of existing state variables and current velocity filed. To introduce the methodology, we described the process of obtaining the training data, machine learning process and the coupling of machine learning model with commercial software DEFROMTM, as a preliminary study, via rigid plastic finite element simulation.

Unsupervised learning control using neural networks (신경 회로망을 이용한 무감독 학습제어)

  • 장준오;배병우;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1017-1021
    • /
    • 1991
  • This paper is to explore the potential use of the modeling capacity of neural networks for control applications. The tasks are carried out by two neural networks which act as a plant identifier and a system controller, respectively. Using information stored in the identification network control action has been developed. Without supervising control signals are generated by a gradient type iterative algorithm.

  • PDF

A Classified Space VQ Design for Text-Independent Speaker Recognition (문맥 독립 화자인식을 위한 공간 분할 벡터 양자기 설계)

  • Lim, Dong-Chul;Lee, Hanig-Sei
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.673-680
    • /
    • 2003
  • In this paper, we study the enhancement of VQ (Vector Quantization) design for text independent speaker recognition. In a concrete way, we present a non-iterative method which makes a vector quantization codebook and this method performs non-iterative learning so that the computational complexity is epochally reduced The proposed Classified Space VQ (CSVQ) design method for text Independent speaker recognition is generalized from Semi-noniterative VQ design method for text dependent speaker recognition. CSVQ contrasts with the existing desiEn method which uses the iterative learninE algorithm for every traininE speaker. The characteristics of a CSVQ design is as follows. First, the proposed method performs the non-iterative learning by using a Classified Space Codebook. Second, a quantization region of each speaker is equivalent for the quantization region of a Classified Space Codebook. And the quantization point of each speaker is the optimal point for the statistical distribution of each speaker in a quantization region of a Classified Space Codebook. Third, Classified Space Codebook (CSC) is constructed through Sample Vector Formation Method (CSVQ1, 2) and Hyper-Lattice Formation Method (CSVQ 3). In the numerical experiment, we use the 12th met-cepstrum feature vectors of 10 speakers and compare it with the existing method, changing the codebook size from 16 to 128 for each Classified Space Codebook. The recognition rate of the proposed method is 100% for CSVQ1, 2. It is equal to the recognition rate of the existing method. Therefore the proposed CSVQ design method is, reducing computational complexity and maintaining the recognition rate, new alternative proposal and CSVQ with CSC can be applied to a general purpose recognition.

A Study on the Improvement of Convergence for a Discrete-time Learning Controller by Approximated Inverse Model (근사 역모델에 의한 이산시간 학습제어기의 수렴성 개선에 관한 연구)

  • Moon, Myung-Soo;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.101-105
    • /
    • 1989
  • The iterative learning controller makes the system output follow the desired output over a finite time interval through iterating trials. In this paper, first we discuss that the design problem of learning controller is originally the design problem of the inverse model. Then we show that the tracking error which is the difference between the desired output and the system output is reduced monotonically by properly modeled inverse system if the magnitude of the learning operator being introduced is bounded within the unit circle in complex domain. Also it would be shown that the conventional learning control method is a kind of extremely simplified inverse model learning control method of the objective controlled system. Hence this control method can be considered as a generalization of the conventional learning control method. The more a designer model the objective controlled system precisely, the better the performance of the approximated inverse model learning controller would be. Finally we compare the performance of the conventional learning control method with that of the approximated inverse model learning control method by computer simulation.

  • PDF

Effective blended learning instructional design strategies in medical education (의학교육에서 효과적인 블렌디드 러닝 수업 설계 전략)

  • Hyeonmi Hong
    • Journal of Medicine and Life Science
    • /
    • v.21 no.3
    • /
    • pp.53-61
    • /
    • 2024
  • With the rapid development of technology and societal change, a shift from traditional classroom instruction to more diverse educational methods in medical education is necessary. As an effective approach to providing flexibility and accessibility while maintaining the benefits of face-to-face interactions, blended learning, which integrates online and offline learning, has gained attention. This study examines the current status and best practices of the aforementioned blended learning, analyzes its application in domestic and international contexts, and derives effective instructional design strategies. A comprehensive review of previous research and empirical cases reveals a conceptual framework and core principles for designing such blended learning. Key considerations include strategic integration of online and offline activities, facilitation of self-directed learning and interaction, effective use of technology, and continuous quality improvement. Furthermore, we suggest contextually relevant strategies, such as designing curricula focused on clinical reasoning, providing iterative practice opportunities, enhancing reflection, and fostering future competencies. The case analysis establishes that blended learning is implemented in various forms across different medical schools and curricula. Common features include the linkage of online and offline learning, incorporation of learner-centered methods, and emphasis on practical competencies. However, the limited number of cases suggests that generalizations may be premature. Successful implementation requires multifaceted efforts, including gradual introduction, faculty support, flexible curricula, safety measures, and institutional support. Accumulating empirical research and evidence of their effectiveness can facilitate their wider dissemination. This study provides implications and future directions for innovative medical education using hybrid learning.