• 제목/요약/키워드: iteration scheme

검색결과 243건 처리시간 0.024초

압전적층판의 열-압전-탄성 동적 비선형 작동특성 (Thermopiezoelastic Nonlinear Dynamic Characteristics of Piezolaminated Plates)

  • 오일권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.662-667
    • /
    • 2005
  • Nonlinear dynamics of active piezolaminated plates are investigated with respect to the thermopiezoelastic behaviors. For largely deformed structures with small strain, the incremental total Lagrangian formulation is presented based on the virtual work principles. A multi field layer wise finite shell element is proposed for assuring high accuracy and non-linearity of displacement, electric and thermal fields. For dynamic consideration of thermopiezoelastic snap through phenomena, the implicit Newmark's scheme with the Newton-Raphson iteration is implemented for the transient response of various piezolaminated models with symmetric or eccentric active layers. The bifurcate thermal buckling of symmetric structural models is first investigated and the characteristics of piezoelectric active responses are studied for finding snap through piezoelectric potentials and the load path tracking map. The thermoelastic stable and unstable postbuckling, thermopiezoelastic snap through phenomena with several attractors are proved using the nonlinear time responses for various initial conditions and damping loss factors. Present results show that thermopiezoelastic snap through phenomena can result in the difficulty of buckling and postbuckling control of intelligent structures.

  • PDF

콜부르크-화이트 방정식의 수치해와 이의 적용 (Numerical Solution of Colebrook-White Equation and It's Application)

  • 김민환;송창수
    • 상하수도학회지
    • /
    • 제19권5호
    • /
    • pp.613-618
    • /
    • 2005
  • In analysis of pipelines or pipe network we calculated the friction loss using Hazen-Williams or Manning formula approximately, or found one by friction coefficient from Moody diagram graphically. The friction coefficient is determined as a function of relative roughness and Reynolds number. But the calculated friction coefficient by Hazen-Williams or Manning formula considered roughness of pipe or velocity of flow. The friction coefficient in Darcy-Weisbach equation was obtained from the Moody diagram. This method is manual and is not exact from reading. This paper is presented numerical solution of Colebrook-White formula including variables of relative roughness and Reynolds number. The suggested subroutine program by an efficient linear iteration scheme can be applied to any pipe network system.

3자유도 능동형 제진 시스템의 불확실성과 제어 (Uncertainties and control of a 3-DOF active vibration isolation system)

  • 김화수;박희재;문준희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.925-933
    • /
    • 2006
  • Using the physics-based model for the vibration isolation system, the model uncertainties are described. With the model including parameter perturbations, the robust controller to meet the robust performance and stability is designed through $\mu$-synthesis by DK-iteration. The order of controller is reduced by virtue of Hankel norm approximation technique to allow the efficient implementation in the real-time experimental environment without any performance degradation. The performance of the reduced $\mu$-controller is accessed in comparison with the original one. The experiments validate the superiority of the proposed control scheme against the model uncertainties and its applicability with varying payload.

  • PDF

Calibration and Uncertainty Analysis of Sample-Time Error on High Jitter of Samplers

  • Cho, Chihyun;Lee, Joo-Gwang;Kang, Tae-Weon;Kang, No-Weon
    • Journal of electromagnetic engineering and science
    • /
    • 제18권3호
    • /
    • pp.169-174
    • /
    • 2018
  • In this paper, we propose an estimation method using multiple in-phase and quadrature (IQ) signals of different frequencies to evaluate the sample-time errors in the sampling oscilloscope. The estimator is implemented by ODRPACK, and a novel iteration scheme is applied to achieve fast convergence without any prior information. Monte-Carlo simulation is conducted to confirm the proposed method. It clearly shows that the multiple IQ approach achieves more accurate results compared to the conventional method. Finally, the criteria for the frequency selection and the signal capture time are investigated.

Newton-GMRES 법을 사용한 혼합격자에서의 압축성 Navier-Stoke 방정식 수치 해석 (Numerical Solutions of Compressible Navier-Stokes Equations on Hybrid Meshes Using Newton-GMRES Method)

  • 최환석
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.178-183
    • /
    • 2000
  • An efficient Newton-GMRES algorithm is presented for computing two-dimensional steady compressible viscous flows on unstructured hybrid meshes. The scheme is designed on cell-centered finite volume method which accepts general polygonal meshes. Steady-state solution is obtained with pseudo-transient continuation strategy. The preconditioned, restarted general minimum residual(GMRES) method is employed in matrix-free form to solve the linear system arising at each Newton iteration. The incomplete LU fartorization is employed for the preconditioning of linear system. The Spalart-Allmars one equation turbulence model is fully coupled with the flow equations to simulate turbulence effect. The accuracy, efficiency and robustness of the presently developed method are demonstrated on various test problems including laminar and turbulent flows over flat plate and airfoils.

  • PDF

Nonlinear Finite Element Analysis of Composite Shell Under Impact

  • Cho, Chong-Du;Zhao, Gui-Ping;Kim, Chang-Boo
    • Journal of Mechanical Science and Technology
    • /
    • 제14권6호
    • /
    • pp.666-674
    • /
    • 2000
  • Large deflection dynamic responses of laminated composite cylindrical shells under impact are analyzed by the geometrically nonlinear finite element method based on a generalized Sander's shell theory with the first order transverse shear deformation and the von-Karman large deflection assumption. A modified indentation law with inelastic indentation is employed for the contact force. The nonlinear finite element equations of motion of shell and an impactor along with the contact laws are solved numerically using Newmark's time marching integration scheme in conjunction with Akay type successive iteration in each step. The ply failure region of the laminated shell is estimated using the Tsai- Wu quadratic interaction criteria. Numerical results, including the contact force histories, deflections and strains are presented and compared with the ones by linear analysis. The effect of the radius of curvature on the composite shell behaviors is investigated and discussed.

  • PDF

3자유도 능동형 제진 시스템의 불확실성과 제어 (Uncertainties and Control of a 3-DOF Active Vibration Isolation System)

  • 김화수;박희재;조영만;문준희
    • 한국소음진동공학회논문집
    • /
    • 제16권12호
    • /
    • pp.1262-1271
    • /
    • 2006
  • Using the physics-based model for the vibration isolation system, the model uncertainties are described. With the model including parameter perturbations, the robust controller to meet the robust performance and stability is designed through $\mu$-synthesis by DK-iteration. The order of controller is reduced by virtue of Hankel norm approximation technique to allow the efficient implementation in the real-time experimental environment without any performance degradation. The performance of the reduced $\mu$-controller is accessed in comparison with the original one. The experiments validate the superiority of the proposed control scheme against the model uncertainties and its applicability with varying payload.

Iterative neural network strategy for static model identification of an FRP deck

  • Kim, Dookie;Kim, Dong Hyawn;Cui, Jintao;Seo, Hyeong Yeol;Lee, Young Ho
    • Steel and Composite Structures
    • /
    • 제9권5호
    • /
    • pp.445-455
    • /
    • 2009
  • This study proposes a system identification technique for a fiber-reinforced polymer deck with neural networks. Neural networks are trained for system identification and the identified structure gives training data in return. This process is repeated until the identified parameters converge. Hence, the proposed algorithm is called an iterative neural network scheme. The proposed algorithm also relies on recent developments in the experimental design of the response surface method. The proposed strategy is verified with known systems and applied to a fiber-reinforced polymer bridge deck with experimental data.

전파 교육에 적용할 수 있는 반복 그린함수 방법을 이용한 전자파 도파관 구조의 새로운 해석법 (A New Analysis of Waveguide Structure Using the Iterative Green's Function Method Applicable to the Electromagnetics Instruction)

  • 조용희
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2003년도 춘계종합학술대회논문집
    • /
    • pp.403-405
    • /
    • 2003
  • 학부생들이 쉽게 사용할 수 있는 기법인 반복 그린함수 방법(IGFM)을 이용하여 복잡한 전자파 도파관 구조를 이론적으로 해석한다. IGFM은 그린함수와 반복법을 이용한다. IGFM의 간단한 공식화를 위해 단순한 수학 방정식만을 사용한 물리적인 메커니즘을 이용한다. 전형적인 전자파 도파관 구조인 평행판 E평면 T접합에 대한 산란 특성을 IGFM 관점에서 이론적으로 공식화한다. 수치해석 결과를 주파수에 대한 반사와 투과 전력 관점에서 보인다. 우세모드 해를 유도하고 그 결과를 고차모드에 의한 해와 비교한다.

  • PDF

REGULARITY OF WEAK SOLUTIONS OF THE COMPRESSIBLE NAVIER-STOKES EQUATIONS

  • Choe, Hi-Jun;Jin, Bum-Ja
    • 대한수학회지
    • /
    • 제40권6호
    • /
    • pp.1031-1050
    • /
    • 2003
  • In this paper, we assume a density with integrability on the space $L^{\infty}$(0, T; $L^{q_{0}}$) for some $q_{0}$ and T > 0. Under the assumption on the density, we obtain a regularity result for the weak solutions to the compressible Navier-Stokes equations. That is, the supremum of the density is finite and the infimum of the density is positive in the domain $T^3$ ${\times}$ (0, T). Moreover, Moser type iteration scheme is developed for $L^{\infty}$ norm estimate for the velocity.