• Title/Summary/Keyword: item

Search Result 6,869, Processing Time 0.032 seconds

An Analysis on the Priority of Educational Needs of Teachers in Charge of Educational Contents of Invention Intellectual Property in Secondary Vocational Education (중등단계 직업교육에서의 발명·지식재산 교육내용에 대한 담당 교사의 교육요구도 우선 순위 분석)

  • Lee, Sang-hyun;Lee, Chan-joo;Lee, Byung-Wook
    • 대한공업교육학회지
    • /
    • v.40 no.2
    • /
    • pp.155-174
    • /
    • 2015
  • The purposes of this study were to analyze the property of educational needs of teachers for educational contents of invention and intellectual property in secondary vocational education and provide fundamental data for the development of job training programs so as to develop the capabilities of teachers, the base for effective education of invention intellectual property in secondary vocational education. To achieve them, educational needs for the educational contents of invention intellectual property and the priority of the educational needs in secondary vocational education based on the recognition of the teachers were analyzed and suggested. Concrete results of this study can be suggested as follows. First, the average of educational needs of the teachers for the educational contents of invention intellectual property in secondary vocational education was 5.02. There were 23 items of the educational contents whose educational needs were higher than the average of the whole items and for those items and the average of each item, there were F4(The average of patent applications) 6.72, F5(Modification and supplementation of specification sheets) 6.46, F2(Writing of patent floor plans) 6.39, F3(Writing of patent specification sheets and abstraction) 6.31, A5(Invention method and activity) 6.27, E6(Invention design project) 6.15, H3(Invention commercialization) 5.97, F1(Patent information and application) 5.90, E5(Design obligation) 5.78, E3(Designing process of inventional design) 5.77, A4(Invention and problem solving) 5.57, G2(Patent investigation and classification) 5.47, C2(Thinking method of inventional problem solution) 5.45, E4(Production of inventional design product) 5.45, B5(Inventional patent project) 5.42, A2(Creativity development) 5.26, C4(Inventional problem solving project) 5.26, H4(Invention marketing) 5.26, H2(Analysis on invention commercialization) 5.20, D4(Invention and management) 5.16, C3(Problem solving activity) 5.14, E2(Inventional design devise and expression) 5.11, B3(Actuality of inventional method) 5.08 in order. Second, for the priority of educational needs of the teachers for the educational contents of invention intellectual property in secondary vocational education, there were 13 items of the educational contents for the first rank, 10 for the second rank and 17 for the third rank. The items of the educational contents for the first rank were A4(invention and problem solving), A5(inventional method and activity), B5(Invention patent project), C2(Thinking method of inventional problem solution), C4(Inventional problem solving project), E3(Inventional design process), E4(Production of inventional design product), E5(Design obligation), E6(Invention design project), F1(Patent information and application), F2(Writing of patent floor plan), F3(Writing of patent specification sheet and abstract), and H3(Invention commercialization. The items of the educational contents for the second rank were A2(Creativity development), B3(Actuality of inventional method), C3(Problem solving activity), D4(Invention and management), E2(Invention design devise and expression), F4(Range of patent demand), F5(Modification and supplementation of specification sheet), G2(Patent investigation and classification), H2(Analysis on invention commercialization), and H4(Invention marketing). The items for the third rank were the educational contents except the ones of the first rank and the second rank.

The Ontology Based, the Movie Contents Recommendation Scheme, Using Relations of Movie Metadata (온톨로지 기반 영화 메타데이터간 연관성을 활용한 영화 추천 기법)

  • Kim, Jaeyoung;Lee, Seok-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.25-44
    • /
    • 2013
  • Accessing movie contents has become easier and increased with the advent of smart TV, IPTV and web services that are able to be used to search and watch movies. In this situation, there are increasing search for preference movie contents of users. However, since the amount of provided movie contents is too large, the user needs more effort and time for searching the movie contents. Hence, there are a lot of researches for recommendations of personalized item through analysis and clustering of the user preferences and user profiles. In this study, we propose recommendation system which uses ontology based knowledge base. Our ontology can represent not only relations between metadata of movies but also relations between metadata and profile of user. The relation of each metadata can show similarity between movies. In order to build, the knowledge base our ontology model is considered two aspects which are the movie metadata model and the user model. On the part of build the movie metadata model based on ontology, we decide main metadata that are genre, actor/actress, keywords and synopsis. Those affect that users choose the interested movie. And there are demographic information of user and relation between user and movie metadata in user model. In our model, movie ontology model consists of seven concepts (Movie, Genre, Keywords, Synopsis Keywords, Character, and Person), eight attributes (title, rating, limit, description, character name, character description, person job, person name) and ten relations between concepts. For our knowledge base, we input individual data of 14,374 movies for each concept in contents ontology model. This movie metadata knowledge base is used to search the movie that is related to interesting metadata of user. And it can search the similar movie through relations between concepts. We also propose the architecture for movie recommendation. The proposed architecture consists of four components. The first component search candidate movies based the demographic information of the user. In this component, we decide the group of users according to demographic information to recommend the movie for each group and define the rule to decide the group of users. We generate the query that be used to search the candidate movie for recommendation in this component. The second component search candidate movies based user preference. When users choose the movie, users consider metadata such as genre, actor/actress, synopsis, keywords. Users input their preference and then in this component, system search the movie based on users preferences. The proposed system can search the similar movie through relation between concepts, unlike existing movie recommendation systems. Each metadata of recommended candidate movies have weight that will be used for deciding recommendation order. The third component the merges results of first component and second component. In this step, we calculate the weight of movies using the weight value of metadata for each movie. Then we sort movies order by the weight value. The fourth component analyzes result of third component, and then it decides level of the contribution of metadata. And we apply contribution weight to metadata. Finally, we use the result of this step as recommendation for users. We test the usability of the proposed scheme by using web application. We implement that web application for experimental process by using JSP, Java Script and prot$\acute{e}$g$\acute{e}$ API. In our experiment, we collect results of 20 men and woman, ranging in age from 20 to 29. And we use 7,418 movies with rating that is not fewer than 7.0. In order to experiment, we provide Top-5, Top-10 and Top-20 recommended movies to user, and then users choose interested movies. The result of experiment is that average number of to choose interested movie are 2.1 in Top-5, 3.35 in Top-10, 6.35 in Top-20. It is better than results that are yielded by for each metadata.

A Study on the Improvement of Recommendation Accuracy by Using Category Association Rule Mining (카테고리 연관 규칙 마이닝을 활용한 추천 정확도 향상 기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.27-42
    • /
    • 2020
  • Traditional companies with offline stores were unable to secure large display space due to the problems of cost. This limitation inevitably allowed limited kinds of products to be displayed on the shelves, which resulted in consumers being deprived of the opportunity to experience various items. Taking advantage of the virtual space called the Internet, online shopping goes beyond the limits of limitations in physical space of offline shopping and is now able to display numerous products on web pages that can satisfy consumers with a variety of needs. Paradoxically, however, this can also cause consumers to experience the difficulty of comparing and evaluating too many alternatives in their purchase decision-making process. As an effort to address this side effect, various kinds of consumer's purchase decision support systems have been studied, such as keyword-based item search service and recommender systems. These systems can reduce search time for items, prevent consumer from leaving while browsing, and contribute to the seller's increased sales. Among those systems, recommender systems based on association rule mining techniques can effectively detect interrelated products from transaction data such as orders. The association between products obtained by statistical analysis provides clues to predicting how interested consumers will be in another product. However, since its algorithm is based on the number of transactions, products not sold enough so far in the early days of launch may not be included in the list of recommendations even though they are highly likely to be sold. Such missing items may not have sufficient opportunities to be exposed to consumers to record sufficient sales, and then fall into a vicious cycle of a vicious cycle of declining sales and omission in the recommendation list. This situation is an inevitable outcome in situations in which recommendations are made based on past transaction histories, rather than on determining potential future sales possibilities. This study started with the idea that reflecting the means by which this potential possibility can be identified indirectly would help to select highly recommended products. In the light of the fact that the attributes of a product affect the consumer's purchasing decisions, this study was conducted to reflect them in the recommender systems. In other words, consumers who visit a product page have shown interest in the attributes of the product and would be also interested in other products with the same attributes. On such assumption, based on these attributes, the recommender system can select recommended products that can show a higher acceptance rate. Given that a category is one of the main attributes of a product, it can be a good indicator of not only direct associations between two items but also potential associations that have yet to be revealed. Based on this idea, the study devised a recommender system that reflects not only associations between products but also categories. Through regression analysis, two kinds of associations were combined to form a model that could predict the hit rate of recommendation. To evaluate the performance of the proposed model, another regression model was also developed based only on associations between products. Comparative experiments were designed to be similar to the environment in which products are actually recommended in online shopping malls. First, the association rules for all possible combinations of antecedent and consequent items were generated from the order data. Then, hit rates for each of the associated rules were predicted from the support and confidence that are calculated by each of the models. The comparative experiments using order data collected from an online shopping mall show that the recommendation accuracy can be improved by further reflecting not only the association between products but also categories in the recommendation of related products. The proposed model showed a 2 to 3 percent improvement in hit rates compared to the existing model. From a practical point of view, it is expected to have a positive effect on improving consumers' purchasing satisfaction and increasing sellers' sales.

Effect of Cellulose Derivatives to Reduce the Oil Uptake of Deep Fat Fried Batter of Pork Cutlet (셀룰로오스 유도체가 돈가스 튀김옷의 흡유량 감소에 미치는 영향)

  • Kim, Byung-Sook;Lee, Young-Eun
    • Korean journal of food and cookery science
    • /
    • v.25 no.4
    • /
    • pp.488-495
    • /
    • 2009
  • Pork cutlet is a favorite deep fat fried food item among Korean children, and an excellent protein-containing food, and as well as a simple and economical cuisine. However, the frying process adds a significant amount of calories. We added MC (Methylcellulose) and HPMC (Hydroxypropyl Methylcellulose) to the batter in an effort to reduce oil uptake in prepared pork cutlets. After additions of MC and HPMC at concentrations of 0.5, 1, and 1.5% respectively, we assessed the viscosity of batter, color after frying, the increases in moisture retention and oil uptake, and sensory characteristics, comparing each quality. The viscosity of batter with 0.5% HPMC added (w/w) was similar to that of the controls, but the viscosity of all the batter with added MC was so much higher that it was difficult to use the batter for coating at the same temperature, leading to a failure even to prepare a sample. After frying, the batter with added HPMC provided significantly less oil uptake and more moisture retention than the batter to which MC was added. Additionally, with regard to color and sensory characteristics, the pork cutlet with 0.5% added HPMC was superior to the other samples. According to these results, we concluded that when cellulose derivatives are added in order to reduce oil uptake and to raise the moisture retention of the batter of pork cutlet, HPMC is more useful in this regard than MC. Additionally, the batter with 0.5% HPMC added appears to be the best of the tested choices, for three reasons: first, the viscosity of the batter is similar to that of the controls; second, the taste is not greasy after frying as the result of the reduced oil uptake and higher moisture retention; and third, the sensory characteristics of this sample, such as, color, crispiness, and hardness were the best among samples.

Construction and Application of Intelligent Decision Support System through Defense Ontology - Application example of Air Force Logistics Situation Management System (국방 온톨로지를 통한 지능형 의사결정지원시스템 구축 및 활용 - 공군 군수상황관리체계 적용 사례)

  • Jo, Wongi;Kim, Hak-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.77-97
    • /
    • 2019
  • The large amount of data that emerges from the initial connection environment of the Fourth Industrial Revolution is a major factor that distinguishes the Fourth Industrial Revolution from the existing production environment. This environment has two-sided features that allow it to produce data while using it. And the data produced so produces another value. Due to the massive scale of data, future information systems need to process more data in terms of quantities than existing information systems. In addition, in terms of quality, only a large amount of data, Ability is required. In a small-scale information system, it is possible for a person to accurately understand the system and obtain the necessary information, but in a variety of complex systems where it is difficult to understand the system accurately, it becomes increasingly difficult to acquire the desired information. In other words, more accurate processing of large amounts of data has become a basic condition for future information systems. This problem related to the efficient performance of the information system can be solved by building a semantic web which enables various information processing by expressing the collected data as an ontology that can be understood by not only people but also computers. For example, as in most other organizations, IT has been introduced in the military, and most of the work has been done through information systems. Currently, most of the work is done through information systems. As existing systems contain increasingly large amounts of data, efforts are needed to make the system easier to use through its data utilization. An ontology-based system has a large data semantic network through connection with other systems, and has a wide range of databases that can be utilized, and has the advantage of searching more precisely and quickly through relationships between predefined concepts. In this paper, we propose a defense ontology as a method for effective data management and decision support. In order to judge the applicability and effectiveness of the actual system, we reconstructed the existing air force munitions situation management system as an ontology based system. It is a system constructed to strengthen management and control of logistics situation of commanders and practitioners by providing real - time information on maintenance and distribution situation as it becomes difficult to use complicated logistics information system with large amount of data. Although it is a method to take pre-specified necessary information from the existing logistics system and display it as a web page, it is also difficult to confirm this system except for a few specified items in advance, and it is also time-consuming to extend the additional function if necessary And it is a system composed of category type without search function. Therefore, it has a disadvantage that it can be easily utilized only when the system is well known as in the existing system. The ontology-based logistics situation management system is designed to provide the intuitive visualization of the complex information of the existing logistics information system through the ontology. In order to construct the logistics situation management system through the ontology, And the useful functions such as performance - based logistics support contract management and component dictionary are further identified and included in the ontology. In order to confirm whether the constructed ontology can be used for decision support, it is necessary to implement a meaningful analysis function such as calculation of the utilization rate of the aircraft, inquiry about performance-based military contract. Especially, in contrast to building ontology database in ontology study in the past, in this study, time series data which change value according to time such as the state of aircraft by date are constructed by ontology, and through the constructed ontology, It is confirmed that it is possible to calculate the utilization rate based on various criteria as well as the computable utilization rate. In addition, the data related to performance-based logistics contracts introduced as a new maintenance method of aircraft and other munitions can be inquired into various contents, and it is easy to calculate performance indexes used in performance-based logistics contract through reasoning and functions. Of course, we propose a new performance index that complements the limitations of the currently applied performance indicators, and calculate it through the ontology, confirming the possibility of using the constructed ontology. Finally, it is possible to calculate the failure rate or reliability of each component, including MTBF data of the selected fault-tolerant item based on the actual part consumption performance. The reliability of the mission and the reliability of the system are calculated. In order to confirm the usability of the constructed ontology-based logistics situation management system, the proposed system through the Technology Acceptance Model (TAM), which is a representative model for measuring the acceptability of the technology, is more useful and convenient than the existing system.

A Study on the Eco-Cultural Assessment Indicator for Buddhist Temple Forest - Focused on Mt. Jogye Songgwang-sa Temple - (사찰림의 생태문화적 평가지표에 관한 연구 - 조계산 송광사를 중심으로 -)

  • Jang, Young-Whan;Koo, Bon-Hak
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.37 no.2
    • /
    • pp.74-88
    • /
    • 2019
  • This study developed the Assessment Indicator evaluating eco-cultural value of temple forest in Korea and applied the developed Assessment Indicator to Songgwang-sa(also known as Seungbo-sachal), one of the Three Jewels Temple. Literature reviews and the draft of Assessment Indicator were drawn from brainstorming(including 2 forest therapy experts, 1 Buddhist monk expert, 1 landscape architect, 1 forest expert, and 6 researchers). After that, the Assessment Indicator drawn from the group of experts(the 1st in-depth interview: 32 people, the 2nd in-depth interview: 30 people) was verified and revised. The final Assessment Indicator, which was composed of 4 parts and 20 items, was developed. The results are as follows. The eco-cultural Assessment Indicator of temple forest was composed of 4 parts, which were Historical Cultural value, Ecological value, Recreatory Visitational value, and Educational Useful value, and 20 items and each item had 5 points. Historical Cultural value had 5 items and its total points were 25. Ecological value had 5 items and had total 25 points. Recreatory Visitational value had 6 items, 30 total points. Educational Useful value had 4 items, 20 total points. The total points of the eco-cultural Assessment Indicator were 100 points. As a result of applying the developed Assessment Indicator to the target place, Songgwang-sa in Mt. Jogye, Historical Cultural value of temple forest was calculated as 23 points(out of 25). Ecological value was 21 point(out of 25), Recreatory Visitational value, 22 points(out of 30), and Educational Useful value, 16 points(out of 20). The total points were 82(out of 100). Consequently, this study is meaningful based on the following 5 aspects. Firstly, this study challenged the development of the eco-cultural Assessment Indicator of temple forest for the first time. It is significant because the developed Assessment Indicator can be a useful resource for the eco-cultural value of temple forest. Secondly, the result showed that Educational Useful value and Recreatory Visitational value of forest temple were very low. Therefore, the supports for leisure, tour, education, and use of temple forest are needed from Korea Forest Service, Ministry of Environment, Cultural Heritage Administration and other government agencies since they acknowledge the temple forest as the best customers in Korea. Thirdly, the excellence or for eco-cultural value of temple forest needs to be extended in a national level. It is possible to make a Korean National Bran(e.g., the Therapy at the Temple) by blending temple stay, which is only in temples, and therapy, and is also possible to be a global tour industry. Fourthly, this study suggested legal definition about the necessary of legal definition for temple forest because there is no legal definition on temple forest in the current situation. When the definition of temple forest is legally arranaged, it would be a foundation for conserving eco-cultural value of temple forest, for organizing exclusively responsible departments in governmental institutions, and further for registering temple forest as World Natural Heritage. Lastly, the developed eco-cultural Assessment Indicators of temple forest from this study would be applied to "the 7 Sansa, Buddhist Mountain Monasteries in Korea(Sansa)" and the characteristics of each 7 temple are drawn. This study would be a basic data for temples' management and use with the eco-cultural Assessment Indicator of temple forest.

A Study on Knowledge Entity Extraction Method for Individual Stocks Based on Neural Tensor Network (뉴럴 텐서 네트워크 기반 주식 개별종목 지식개체명 추출 방법에 관한 연구)

  • Yang, Yunseok;Lee, Hyun Jun;Oh, Kyong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.25-38
    • /
    • 2019
  • Selecting high-quality information that meets the interests and needs of users among the overflowing contents is becoming more important as the generation continues. In the flood of information, efforts to reflect the intention of the user in the search result better are being tried, rather than recognizing the information request as a simple string. Also, large IT companies such as Google and Microsoft focus on developing knowledge-based technologies including search engines which provide users with satisfaction and convenience. Especially, the finance is one of the fields expected to have the usefulness and potential of text data analysis because it's constantly generating new information, and the earlier the information is, the more valuable it is. Automatic knowledge extraction can be effective in areas where information flow is vast, such as financial sector, and new information continues to emerge. However, there are several practical difficulties faced by automatic knowledge extraction. First, there are difficulties in making corpus from different fields with same algorithm, and it is difficult to extract good quality triple. Second, it becomes more difficult to produce labeled text data by people if the extent and scope of knowledge increases and patterns are constantly updated. Third, performance evaluation is difficult due to the characteristics of unsupervised learning. Finally, problem definition for automatic knowledge extraction is not easy because of ambiguous conceptual characteristics of knowledge. So, in order to overcome limits described above and improve the semantic performance of stock-related information searching, this study attempts to extract the knowledge entity by using neural tensor network and evaluate the performance of them. Different from other references, the purpose of this study is to extract knowledge entity which is related to individual stock items. Various but relatively simple data processing methods are applied in the presented model to solve the problems of previous researches and to enhance the effectiveness of the model. From these processes, this study has the following three significances. First, A practical and simple automatic knowledge extraction method that can be applied. Second, the possibility of performance evaluation is presented through simple problem definition. Finally, the expressiveness of the knowledge increased by generating input data on a sentence basis without complex morphological analysis. The results of the empirical analysis and objective performance evaluation method are also presented. The empirical study to confirm the usefulness of the presented model, experts' reports about individual 30 stocks which are top 30 items based on frequency of publication from May 30, 2017 to May 21, 2018 are used. the total number of reports are 5,600, and 3,074 reports, which accounts about 55% of the total, is designated as a training set, and other 45% of reports are designated as a testing set. Before constructing the model, all reports of a training set are classified by stocks, and their entities are extracted using named entity recognition tool which is the KKMA. for each stocks, top 100 entities based on appearance frequency are selected, and become vectorized using one-hot encoding. After that, by using neural tensor network, the same number of score functions as stocks are trained. Thus, if a new entity from a testing set appears, we can try to calculate the score by putting it into every single score function, and the stock of the function with the highest score is predicted as the related item with the entity. To evaluate presented models, we confirm prediction power and determining whether the score functions are well constructed by calculating hit ratio for all reports of testing set. As a result of the empirical study, the presented model shows 69.3% hit accuracy for testing set which consists of 2,526 reports. this hit ratio is meaningfully high despite of some constraints for conducting research. Looking at the prediction performance of the model for each stocks, only 3 stocks, which are LG ELECTRONICS, KiaMtr, and Mando, show extremely low performance than average. this result maybe due to the interference effect with other similar items and generation of new knowledge. In this paper, we propose a methodology to find out key entities or their combinations which are necessary to search related information in accordance with the user's investment intention. Graph data is generated by using only the named entity recognition tool and applied to the neural tensor network without learning corpus or word vectors for the field. From the empirical test, we confirm the effectiveness of the presented model as described above. However, there also exist some limits and things to complement. Representatively, the phenomenon that the model performance is especially bad for only some stocks shows the need for further researches. Finally, through the empirical study, we confirmed that the learning method presented in this study can be used for the purpose of matching the new text information semantically with the related stocks.

A Study of Intangible Cultural Heritage Communities through a Social Network Analysis - Focused on the Item of Jeongseon Arirang - (소셜 네트워크 분석을 통한 무형문화유산 공동체 지식연결망 연구 - 정선아리랑을 중심으로 -)

  • Oh, Jung-shim
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.3
    • /
    • pp.172-187
    • /
    • 2019
  • Knowledge of intangible cultural heritage is usually disseminated through word-of-mouth and actions rather than written records. Thus, people assemble to teach others about it and form communities. Accordingly, to understand and spread information about intangible cultural heritage properly, it is necessary to understand not only their attributes but also a community's relational characteristics. Community members include specialized transmitters who work under the auspices of institutions, and general transmitters who enjoy intangible cultural heritage in their daily lives. They converse about intangible cultural heritage in close relationships. However, to date, research has focused only on professionals. Thus, this study focused on the roles of general transmitters of intangible cultural heritage information by investigating intangible cultural heritage communities centering around Jeongseon Arirang; a social network analysis was performed. Regarding the research objectives presented in the introduction, the main findings of the study are summarized as follows. First, there were 197 links between 74 members of the Jeongseon Arirang Transmission Community. One individual had connections with 2.7 persons on average, and all were connected through two steps in the community. However, the density and the clustering coefficient were low, 0.036 and 0.32, respectively; therefore, the cohesiveness of this community was low, and the relationships between the members were not strong. Second, 'Young-ran Yu', 'Nam-gi Kim' and 'Gil-ja Kim' were found to be the prominent figures of the Jeongseon Arirang Transmission Community, and the central structure of the network was concentrated around these three individuals. Being located in the central structure of the network indicates that a person is popular and ranked high. Also, it means that a person has an advantage in terms of the speed and quantity of the acquisition of information and resources, and is in a relatively superior position in terms of bargaining power. Third, to understand the replaceability of the roles of Young-ran Yu, Nam-gi Kim, and Gil-ja Kim, who were found to be the major figures through an analysis of the central structure, structural equivalence was profiled. The results of the analysis showed that the positions and roles of Young-ran Yu, Nam-gi Kim, and Gil-ja Kim were unrivaled and irreplaceable in the Jeongseon Arirang Transmission Community. However, considering that these three members were in their 60s and 70s, it seemed that it would be necessary to prepare measures for the smooth maintenance and operation of the community. Fourth, to examine the subgroup hidden in the network of the Jeongseon Arirang Transmission Community, an analysis of communities was conducted. A community refers to a subgroup clearly differentiated based on modularity. The results of the analysis identified the existence of four communities. Furthermore, the results of an analysis of the central structure showed that the communities were formed and centered around Young-ran Yu, Hyung-jo Kim, Nam-gi Kim, and Gil-ja Kim. Most of the transmission TAs recommended by those members, students who completed a course, transmission scholarship holders, and the general members taught in the transmission classes of the Jeongseon Arirang Preservation Society were included as members of the communities. Through these findings, it was discovered that it is possible to maintain the transmission genealogy, making an exchange with the general members by employing the present method for the transmission of Jeongseon Arirang, the joint transmission method. It is worth paying attention to the joint transmission method as it overcomes the demerits of the existing closed one-on-one apprentice method and provides members with an opportunity to learn their masters' various singing styles. This study is significant for the following reasons: First, by collecting and examining data using a social network analysis method, this study analyzed phenomena that had been difficult to investigate using existing statistical analyses. Second, by adopting a different approach to the previous method in which the genealogy was understood, looking at oral data, this study analyzed the structures of the transmitters' relationships with objective and quantitative data. Third, this study visualized and presented the abstract structures of the relationships among the transmitters of intangible cultural heritage information on a 2D spring map. The results of this study can be utilized as a baseline for the development of community-centered policies for the protection of intangible cultural heritage specified in the UNESCO Convention for the Safeguarding of Intangible Cultural Heritage. To achieve this, it would be necessary to supplement this study through case studies and follow-up studies on more aspects in the future.

How to improve the accuracy of recommendation systems: Combining ratings and review texts sentiment scores (평점과 리뷰 텍스트 감성분석을 결합한 추천시스템 향상 방안 연구)

  • Hyun, Jiyeon;Ryu, Sangyi;Lee, Sang-Yong Tom
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.219-239
    • /
    • 2019
  • As the importance of providing customized services to individuals becomes important, researches on personalized recommendation systems are constantly being carried out. Collaborative filtering is one of the most popular systems in academia and industry. However, there exists limitation in a sense that recommendations were mostly based on quantitative information such as users' ratings, which made the accuracy be lowered. To solve these problems, many studies have been actively attempted to improve the performance of the recommendation system by using other information besides the quantitative information. Good examples are the usages of the sentiment analysis on customer review text data. Nevertheless, the existing research has not directly combined the results of the sentiment analysis and quantitative rating scores in the recommendation system. Therefore, this study aims to reflect the sentiments shown in the reviews into the rating scores. In other words, we propose a new algorithm that can directly convert the user 's own review into the empirically quantitative information and reflect it directly to the recommendation system. To do this, we needed to quantify users' reviews, which were originally qualitative information. In this study, sentiment score was calculated through sentiment analysis technique of text mining. The data was targeted for movie review. Based on the data, a domain specific sentiment dictionary is constructed for the movie reviews. Regression analysis was used as a method to construct sentiment dictionary. Each positive / negative dictionary was constructed using Lasso regression, Ridge regression, and ElasticNet methods. Based on this constructed sentiment dictionary, the accuracy was verified through confusion matrix. The accuracy of the Lasso based dictionary was 70%, the accuracy of the Ridge based dictionary was 79%, and that of the ElasticNet (${\alpha}=0.3$) was 83%. Therefore, in this study, the sentiment score of the review is calculated based on the dictionary of the ElasticNet method. It was combined with a rating to create a new rating. In this paper, we show that the collaborative filtering that reflects sentiment scores of user review is superior to the traditional method that only considers the existing rating. In order to show that the proposed algorithm is based on memory-based user collaboration filtering, item-based collaborative filtering and model based matrix factorization SVD, and SVD ++. Based on the above algorithm, the mean absolute error (MAE) and the root mean square error (RMSE) are calculated to evaluate the recommendation system with a score that combines sentiment scores with a system that only considers scores. When the evaluation index was MAE, it was improved by 0.059 for UBCF, 0.0862 for IBCF, 0.1012 for SVD and 0.188 for SVD ++. When the evaluation index is RMSE, UBCF is 0.0431, IBCF is 0.0882, SVD is 0.1103, and SVD ++ is 0.1756. As a result, it can be seen that the prediction performance of the evaluation point reflecting the sentiment score proposed in this paper is superior to that of the conventional evaluation method. In other words, in this paper, it is confirmed that the collaborative filtering that reflects the sentiment score of the user review shows superior accuracy as compared with the conventional type of collaborative filtering that only considers the quantitative score. We then attempted paired t-test validation to ensure that the proposed model was a better approach and concluded that the proposed model is better. In this study, to overcome limitations of previous researches that judge user's sentiment only by quantitative rating score, the review was numerically calculated and a user's opinion was more refined and considered into the recommendation system to improve the accuracy. The findings of this study have managerial implications to recommendation system developers who need to consider both quantitative information and qualitative information it is expect. The way of constructing the combined system in this paper might be directly used by the developers.

Analysis of Korean Dietary Patterns using Food Intake Data - Focusing on Kimchi and Alcoholic Beverages (식품섭취량을 활용한 우리나라 식이 패턴 분석 - 김치류 및 주류 중심으로)

  • Kim, Soo-Hwaun;Choi, Jang-Duck;Kim, Sheen-Hee;Lee, Joon-Goo;Kwon, Yu-Jihn;Shin, Choonshik;Shin, Min-Su;Chun, So-Young;Kang, Gil-Jin
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.3
    • /
    • pp.251-262
    • /
    • 2019
  • In this study, we analyzed Korean dietary habits with food intake data from the Korea National Health and Nutrition Examination Survey (KNHANES) and the Korea Centers for Disease Control and Prevention and we proposed a set of management guidelines for future Korean dietary habits. A total of 839 food items (1,419 foods) were analyzed according to the food catagories in "Food Code", which is the representative food classification system in Korea. The average total daily food intake was 1,585.77 g/day, with raw and processed foods accounting for 858.96 g/day and 726.81 g/day, respectively. Cereal grains contributed to the highest proportion of the food intake. Over 90% of subjects consumed cereal grains (99.09%) and root and tuber vegetables (95.80%) among the top 15 consumed food groups. According to the analysis by item, rice, Korean cabbage kimchi, apple, radish, egg, chili pepper, onion, wheat, soybean curds, potato, cucumber and pork were major (at least 1% of the average daily intake, 158.6 g/day) and frequently (eaten by more than 25% of subjects, 5,168 persons) consumed food items, and Korean spices were at the top of this list. In the case of kimchi, the proportion of intake of Korean cabbage kimchi (64.89 g/day) was the highest. In the case of alcoholic beverages, intake was highest by order of beer (63.53 g/day), soju (39.11 g/day) and makgeolli (19.70 g/day), and intake frequency was high in order of soju (11.3%), beer (7.2%), and sake (6.6%). Analysis results by seasonal intake trends showed that cereal grains have steadily decreased and beverages have slightly risen. In the case of alcoholic beverage consumption frequency, some kinds of makgeolli, wine, sake, and black raspberry wine have decreased gradually year by year. The consumption trend for kimchi has been gradually decreasing as well.