• Title/Summary/Keyword: isotropic shrinkage

Search Result 11, Processing Time 0.026 seconds

Utilization of Domestic Small Timbers -Shrinkage and Swelling of Alkali-Treated Woods- (간벌재 및 소경재의 이용개발에 관한 연구 -알칼리 처리 목재의 수축팽윤성-)

  • 황원중;김남훈
    • Journal of Korea Foresty Energy
    • /
    • v.18 no.2
    • /
    • pp.70-77
    • /
    • 1999
  • The behaviors of alkali swelling in four major Korean woods were examined as a function of concentration cf alkali solution. Density of alkali-treated woods increased highly with increasing alkali concentration in both softwoods and hardwoods. Wood samples swelled in dimension during alkali swelling, and thereafter they shrank highly by water washing and air drying. The air-dried wood samples after alkali treatment showed almost isotropic shrinkage in tangential and radial direction.

  • PDF

Numerical modeling of drying shrinkage behavior of self-compacting concrete

  • Chen, How-Ji;Liu, Te-Hung;Tang, Chao-Wei
    • Computers and Concrete
    • /
    • v.5 no.5
    • /
    • pp.435-448
    • /
    • 2008
  • Self-compacting concrete (SCC), characterized by the high flowability and resistance to segregation, is due to the high amount of paste (including cement and mineral admixtures) in contrast with normal concrete (NC). However, the high amount of paste will limit the volume fractions of coarse aggregate,and reduce the tendency of coarse aggregate to suppress drying shrinkage deformations. For this reason, SCC tends to produce higher values of drying shrinkage than NC for the most part. In order to assess the drying shrinkage of SCC quantitatively for application to offshore caisson foundations, the formulas presented in the literatures (ACI 209 and CEB-FIP) are used to predict the values of drying shrinkage in SCC according to the corresponding mix proportions. Additionally, a finite element (FE) model, which assumes concrete to be a homogeneous and isotropic material and follows the actual size and environmental conditions of the caisson, is utilized to simulate stress distribution situations and deformations in the SCC caisson resulting from the drying shrinkage. The probability of cracking and the behavior of drying shrinkage of the SCC caisson are drawn from the analytic results calculated by the FE model proposed in this paper.

THE EFFECT OF VISCOSITY, SPECIMEN GEOMETRY AND ADHESION ON THE LINEAR POLYMERIZATION SHRINKAGE MEASUREMENT OF LIGHT CURED COMPOSITES (점도, 시편형태 그리고 접착의 유무가 광중합 복합레진의 선형중합수축의 측정에 미치는 영향)

  • Lee, In-Bog;Son, Ho-Hyun;Kwon, Hyuk-Chun;Um, Chung-Moon;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.6
    • /
    • pp.457-466
    • /
    • 2003
  • The aim of study was to investigate the effect of flow, specimen geometry and adhesion on the measurement of linear polymerization shrinkage of light cured composite resins using linear shrinkage measuring device. Four commercially available composites - an anterior posterior hybrid composite Z100, a posterior packable composite P60 and two flowable composites, Filtek flow and Tetric flow-were studied. The linear polymerization shrinkage of composites was determined using 'bonded disc method' and 'non-bond-ed' free shrinkage method at varying C-factor in the range of 1∼8 by changing specimen geometry. These measured linear shrinkage values were compared with free volumetric shrinkage values. The viscosity and flow of composites were determined and compared by measuring the dropping speed of metal rod under constant load. In non-bonded method, the linear shrinkage approximated one third of true volumetric shrink-age by isotropic contraction. However, in bonded disc method, as the bonded surface increased the linear shrinkage increased up to volumetric shrinkage value by anisotropic contraction. The linear shrinkage value increased with increasing C-factor and approximated true volumetric shrinkage and reached plateau at about C-factor 5∼6. The more flow the composite was, reduced linear shrinkage was measured by compensation radial flow.

Preparation and Sintering Behavior of Fe Nanopowders Produced by Plasma Arc Discharge Process

  • Choi, Chul-Jin;Yu, Ji-Hun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.284-285
    • /
    • 2006
  • The nano-sized Fe powders were prepared by plasma arc discharge process using pure Fe rod. The microstructure and the sintering behavior of the prepared nanopowders were evaluated. The prepared Fe nanopowders had nearly spherical shapes and consisted of metallic core and oxide shell structures. The higher volume shrinkage at low sintering temperature was observed due to the reduction of surface oxide. The nanopowders showed 6 times higher densification rate and more significant isotropic shrinkage behavior than those of micron sized Fe powders.

  • PDF

Improvement of precision of three-dimensional ceramic microstructures employing silica nanoparticle-mixed precursor (나노 실리카분말의 충진효과를 이용한 극미세 3차원 세라믹 구조물 정밀화)

  • Lim T.W.;Park S.H.;Yang D.Y.;Pham Tuan Anh;Kim D.P.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.157-158
    • /
    • 2006
  • A novel nanofabrication process has been developed using two-photon crosslinking (TPC) for the fabrication of three-dimensional (3D) SiCN ceramic microstructures applicable to high functional 3D devices, which can be used in harsh working environments requiring a high temperature, a resistance to chemical corrosion, as well as tribological properties. After sequential processes: TPC and pyrolysis, 3D ceramic microstructures are obtained. However, large shrinkage due to low-ceramic yield during the pyrolysis is a serious problem to be solved in the precise fabrication of 3D ceramic microstructures. In this work, silica nanoparticles were employed as a filler to reduce the amount of shrinkage. In particular, the ceramic microstructures containing 40 wt% silica nanoparticles exhibited relatively isotropic shrinkage owing to its sliding free from the substrate during pyrolysis.

  • PDF

Alkali swelling characteristics of wood elements (목재 구성세포의 알칼리 팽윤 특성)

  • 황원중;김남훈
    • Journal of Korea Foresty Energy
    • /
    • v.20 no.1
    • /
    • pp.62-72
    • /
    • 2001
  • To elucidate the behaviors of alkali swelllng of woods. the dimensional change in cross section of cell elements of four major Korean woods during alkali swelling were examined by an optical microscory, an imaging analysis method and an X-ray diffrartion During alkali swelling, tracheid diameter of Larix kaempferi wood showed greater swelling property than that of Pinus koraiensis wood, and the cell wall swelled highly over 10% sodium hydroxide solution treatment. The radial diameter of vessel elements in earlywood shrunk, but it swelled slightly in tangential direction. When treated with 5% NaOH, the wall thickness of wood fiber increased about three times over the original one. The thickness of cell wall in all elements and the diameter of wood fiber and tracheid showed almost isotropic shrinkage. The diameter of cell elements during the mercerization process decreased, but cell wall thickness Increased. Crystal transformation of cellulose in wood was not occurred by alkali treatments. but relative crystallinity and crystallite width of the woods increased slightly. Consequently, it was demonstrated that the swelling properties of woods were dependant on wood species, cell elements and alkali concentration.

  • PDF

Evaluation of Characteristics of Anisotropic Deformation in Manufacturing of Large-scale Glass-ceramic Composite Sintered Body (대형 유리-세라믹 복합 매질 소결체 제조 시 비등방성 변형 특성 평가)

  • Kim, Kwang-Wook;Sohn, Sungjune;Kim, Jimin;Foster, Richard I.;Lee, Keunyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.31-41
    • /
    • 2020
  • We studied the anisotropic shrinkage and deformation characteristics of large size sintered bodies in the manufacturing of glass-ceramic composite wasteform. We used uranium-bearing waste, generated from the treatment of spent uranium catalyst. Sintered specimens were prepared in several forms, comprising a circular disk, and a quarter disk in several diameters of up to 40 cm. Regardless of form or size, the sintered bodies had high isotropic shrinkage when they were fabricated using green bodies prepared at 60 MPa. The average anisotropy rate and average shrinkage rate were 1.6%, and 37.4%, respectively. We confirmed that the glass-ceramic composite wasteform in a large scale disk-type for packing in a 200 L drum could be fabricated with a tolerable anisotropy shrinkage. This has resulted in a significant reduction in the volume of radioactive waste to be disposed of with highly stable wasteform.

Barriers Ribs using Molds Prepared by Inclined UV Lithography

  • Kim, Ki-In;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.788-790
    • /
    • 2003
  • Closed-cell type barrier ribs of PDP were formed by capillary molding process using molds prepared by inclined UV lithography process. Various types of molds with different inclined angles were prepared by patterning SU-8 thick photoresist film and casting with PDMS. The ribs with various type cells were successfully formed by the process. The effects of inclined angle on the distortion of barrier ribs during sintering were investigated. The results indicated that the barrier ribs with a draft angle and dimensional change does not affect the distortion of the barrier ribs during sintering, suggesting that the closed-cell must be isotropic in sintering shrinkage.

  • PDF

The Effect of Packing Density on the Warpage Behavior of Ni-Zn-Cu Ferrite Sheets (Ni-Zn-Cu계 페라이트 시트에서 충진 밀도에 따른 시트 휨 현상)

  • Kim, Shi Yeon;Yeo, Dong-Hun;Shin, Hyo-Soon;Song, Woo Chang;Yoon, Ho Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.781-786
    • /
    • 2015
  • It is necessary for ferrite sheets to be fabricated with high packing density for excellent electrical properties and high strength. In this study, the relationship between the warpage and the packing density of ferrite green sheet, was investigated with amount variation of organic additives. With 0.4 wt% of dispersant, the packing density was about 48% and warpage appeared 0.5~1.3 mm high. With 1.4 wt% of dispersant, the packing density increased up to 57% and warpage appeared 0.8~2.1 mm high. With high packing density, warpage appeared along the edges of specimen, while with low packing density, deformation appeared over whole specimen inhomogeneously. It is thought that inhomogeneous deformation after sintering came from the inhomogeneity in green sheet prepared with badly dispersed slurry. With good homogeneity in green sheet from well-dispersed slurry, isotropic shrinkage is thought to have occurred along the distance from center to edges of specimen during sintering.