References
- K. Sawada, D. Hirabayashi, and Y. Enokida, Reaction of Antimony-Uranium Composite Oxide in the Chlorination Treatment of Waste Catalyst, Waste Management 2013, Phoenix. AZ. 2013.
- K.W. Kim, M.J. Kim, M.K. Oh, J. Kim, H.H. Sung, R. I. Foster, and K.Y. Lee, "Development of a Treatment Process and Immobilization Method for the Volume Reduction of Uranium-bearing Spent Catalysts for Final Disposal", J. Nucl. Sci. & Tech., 55(12), 1459-1472 (2018). https://doi.org/10.1080/00223131.2018.1516578
- K.W. Kim, R.I. Foster, J. Kim, H.H. Sung, D. Yang, W.J. Shon, M.K. Oh, and K.Y. Lee, "Glass-ceramic Composite Wasteform to Immobilize and Stabilize a Uranium-bearing Waste Generated From Treatment of a Spent Uranium Catalyst", J. Nucl. Mat., 516, 238-246 (2019) https://doi.org/10.1016/j.jnucmat.2019.01.005
- K.W. Kim, M.K. Oh, W.J. Shon, R.I. Foster, K.Y. Lee, Treatment of Uranium Catalyst Waste for High Volume Reduction of the Final Waste to be Disposed, Waste Management 2019, Phoenix. AZ. 2019.
- US Patent 3,988,359, Catalyst for Use in and Process for Preparing Acrylonitrile (1976).
- K.W. Kim, M.J. Kim, M.K. Oh, J. Kim, R.I. Foster, and K.Y. Lee, "Volume Reduction of Uranium Catalyst Waste for Final Disposal", Eurasia 2018 Waste Management Symposium, Istanbul (2018).
- KR Patent 10-1989910, Volume Reduction Treatment Method of Spent Uranium Catalyst (2019).
- International Atomic Energy Agency, Handbook, Conditioning of Low- and Intermediate-level Liquid and Solid waste, IAEA-TECDOC, IAEA, Vienna, to be printed (2020).
- D. Caurant, P. Loiseau, O. Majerus, V. Aubin-Chevaldonnet, I. Bardez, A. Quintas, Glass, Glass-ceramics and Ceramics for Immobilization of Highly Radioactive Nuclear Waste, Nova Sci. Pub. Inc., Paris (2009).
- Michael I. Ojovan, Handbook of Advanced Radioactive Waste Conditioning Technologies, Woodhead Publishing (2011).
- I.W. Donald, B. L. Metcalfe, and R. N. J. Taylor, "Review: The Immobilization of High Level Radioactive Waste Using Ceramics and Glasses", J. Mat. Sci., 32, 5851-5887 (1997). https://doi.org/10.1023/A:1018646507438
- J. Choi, W. Um, and S. Choung, "Development of Iron Phosphate Ceramic Waste Form to Immobilize Radioactive Waste Solution", J. Nucl. Mat., 452, 16-23 (2014). https://doi.org/10.1016/j.jnucmat.2014.04.033
- V.S. Department of Energy, Stabilization /Solidification Processes From Mixed Waste, DOE Report EPA 402-R-96-014 (1996).
- International Atomic Energy Agency, Containers for packing of solid and intermediate Level Radioactive Waste, IAEA report, Technical reports series No.355 (1993).
- V. S. Thorat, R. K. Mishra, V. Sudarsan, A. Kumar, A. K. Tyagi, and C.P. Kaushik, "Leaching Studies on Borosilicate Glasses for the Immobilization of High-level Radioactive Waste in the Pellet Form Subjected to Aggressive Test Conditions", Bull. Mater.Sci., 42, 211-218 (2019). https://doi.org/10.1007/s12034-019-1900-7
- F. Dorai, M. Rolland, A. Wachs, M. Marcoux, and E. Climent, "Packing Fixed Bed Reactors Withy Cylinders: Influence of Particle Length Distribution, Procedia Engineering", 42, 1335-1345 (2012) https://doi.org/10.1016/j.proeng.2012.07.525
- Korea Nuclear Safety & Security Commission, Low and Intermediate Level Radioactive Waste Delivery Guide, Notification No.2015-4, 2014.
- Korea Radioactive Waste Agency, SAR 8.3 of Low and Intermediate Level Radioactive Waste Disposal Facility, KORAD Report (2016).
- KR Patent 10-1960721, Packing Method of Sintered Radioactive Solid Waste in Drum (2019).
- O. Bretcanu, X. Chatzistavrou, K. Paraskevopoulos, R. Conradt, I. Thompson, and A. R. Boccaccini, "Sintering and Crystallization of 45S5 Bioglass Powder", J. European Ceramic Soc., 3299-3306 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.06.035
- M.N. Rahaman, Ceramic processing and Sintering, 2nd ed. Marcel Dekker Inc., N.Y. 2003.
- A.R. Boccaccini, and R. Conradt, "Isotropic Shrinkage of Platelet Containing Glass Powder Compacts During Isothermal Sintering", Int. J. Inorg. Mater., 3, 101-106, (2001). https://doi.org/10.1016/S1466-6049(01)00005-8
- E.A. Olevsky and R.M. German, "Effect of Gravity on Dimensional Change During Sintering- 1. Shrinkage Anisotropy", Acta Mater., 48(5), 1153-1166 (2000). https://doi.org/10.1016/S1359-6454(99)00368-7
- S. Schiller and H.J. Schmidem, "Ultrafine Dust Filtration Using Precoat Materials Considering the Influence of Filter", Media. Chem. Eng. Tech., 37(6), 1009-1020 (2014). https://doi.org/10.1002/ceat.201300856
- Rilling K., "Precoat Filter Aids can Reduce Wastewater Treatment Costs", Environ. Sci. & Eng. Magazine, Nov./Dec.,12-14 (2014).
- Kuhn M., Briesen H., "Dynamic Modeling of Filter-aid Filtration Including Surface- and Depth-filtration Effects", Chem. Eng. Tech., 39(3), 425-434 (2016). https://doi.org/10.1002/ceat.201500347
- M. Ojovan, W.E. Lee, and S.N. Kaqlmykov, "An Introduction to Nuclear Waste Immobilization", 3rd Ed. Elsevier (2019).
Cited by
- Pilot-Scale Treatment of a Spent Uranium Catalyst Formally Used in the SOHIO Process: Pilot Plant Verification of the SENSEI Process vol.5, pp.19, 2020, https://doi.org/10.1021/acsomega.0c00723