• Title/Summary/Keyword: isotropic etching

Search Result 36, Processing Time 0.023 seconds

A Study of Characterization of Multi-Crystalline Silicon Solar Cell Module using by RIE and Wet Texturing for BIPV (BIPV용 건식 및 습식 텍스쳐링 공정에 의한 다결정실리콘 태양전지 모듈 특성 연구)

  • Seo, Il-Won;Yun, Myung-Soo;Jo, Tae-Hoon;Son, Chan-Hee;Cha, Sung-Ho;Lee, Sang-Du;Kwon, Gi-Chung
    • New & Renewable Energy
    • /
    • v.9 no.2
    • /
    • pp.30-39
    • /
    • 2013
  • Multi-crystalline silicon solar cells is not exist a specific crystal direction different from single crystalline silicon solar cells. In functional materials, therefore, isotropic wet etching of mc-Si solar cell is easy the acid solution rather than the alkaline solution. The reflectance of wet texturing process is about 25% and the reflectance of RIE texturing process is achieved less than 10%. In addition, wet texturing has many disadvantages as well as reflectance. So wet texturing process has been replaced by a RIE texturing process. In order to apply BIPV, RIE and wet textured multi-crystalline silicon solar cell modules was manufactured by different kind of EVA sheet. Moreover, in case of BIPV, the short circuit current characteristics according to the angle of incidence is more important, because the installation of BIPV is fixed location. In this study, we has measured SEM image and I-V curve of RIE and wet textured silicon solar cell and PV module. Also we has analyzed quantum efficiency characteristics of RIE and wet textured silicon solar cell for PV modules depending on incidence angle.

Prgress in MEMS Engine Development for MAV Applications (KAIST의 MAV용 MEMS 엔진 개발 현황)

  • Lee, Dae-Hoon;Park, Dae-Eun;Yoon, Eui-Sik;Kwon, Se-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.1-6
    • /
    • 2002
  • Micro engine that includes Micro scale combustor is fabricated. Design target was focused on the observation of combustion driven actuation in MEMS scale. Combustor design parameters are somewhat less than the size recommended by feasibility test. The engine structure is fabricated by isotropic etching of the photosensitive glass wafers. Electrode is formed by electroplating of the Nickel. Photosensitive glass can be etched isotropically with almost vertical angle. Bonding and assembly of structured photosensitive glass wafer from the engine. Combustor size was determined to be 1mn scale. Piston in cylinder moves by fuel injection and reaction. In firing test, adequate engine operation including ignition, flame propagation and piston motion was observed. Present study warrants further application research on MEMS scale internal combustion power units.

A Patterning Process for Organic Thin Films Using Discharge and Suction Needles (토출 및 흡입 Needle을 이용한 유기 박막 패터닝 공정)

  • Kim, Daeyeob;Shin, Dongkyun;Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.79-84
    • /
    • 2020
  • Unlike a printing process, it is difficult to pattern organic thin films in the longitudinal (coating) direction using a coating process. In this paper, we have investigated the feasibility of patterning organic thin films using needles. To this end, we have slot-coated an aqueous poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) solution in the form of a fine stripe or large area and then applied the dual needle; one for discharging the main solvent of the underlying thin film and the other for sucking the dissolved thin film. We have found that the pattern width and depth increase as the moving speed of the plate decreases. However, it is observed that the sidewall slope is very gentle (the length of the slope is of the order of 200 ㎛) due to the fact that the discharged main solvent is widely spread and then isotropic etching occurs. With this scheme, we have also demonstrated that a fine stripe can be obtained by scanning the dual needle closely. To demonstrate its applicability to solution-processable organic light-emitting diodes (OLEDs), we have also fabricated OLED with the patterned PEDOT:PSS stripe and observed the insulation property in the strong light-emitting stripe.

A New Surface Micromachining Technology for Low Voltage Actuated Switch and Mirror Arrays (저전압 구동용 전기스위치와 미러 어레이 응용을 위한 새로운 표면미세가공기술)

  • Park, Sang-Jun;Lee, Sang-Woo;Kim, Jong-Pal;Yi, Sang-Woo;Lee, Sang-Chul;Kim, Sung-Un;Cho, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2518-2520
    • /
    • 1998
  • Silicon can be reactive ion etched (RIE) either isotropically or anisotropically. In this paper, a new micromachining technology combining these two etching characteristics is proposed. In the proposed method, the fabrication steps are as follows. First. a polysilicon layer, which is used as the bottom electrode, is deposited on the silicon wafer and patterned. Then the silicon substrate is etched anisotropically to a few micrometer depth that forms a cavity. Then an PECVD oxide layer is deposited to passivate the cavity side walls. The oxide layers at the top and bottom faces are removed while the passivation layers of the side walls are left. Then the substrate is etched again but in an isotropic etch condition to form a round trench with a larger radius than the anisotropic cavity. Then a sacrificial PECVD oxide layer is deposited and patterned. Then a polysilicon structural layer is deposited and patterned. This polysilicon layer forms a pivot structure of a rocker-arm. Finally, oxide sacrificial layers are etched away. This new micromachining technology is quite simpler than conventional method to fabricate joint structures, and the devices that are fabricated using this technology do not require a flexing structure for motion.

  • PDF

Development of Microlens Array for Maskless Lithography Application (Maskless lithography 응용을 위한 마이크로렌즈 어레이 개발)

  • Nam, Min-Woo;Oh, Hae-Kwan;Kim, Geun-Young;Seo, Hyun-Woo;Wei, Chang-Hyun;Song, Yo-Tak;Yang, Sang-Sik;Lee, Kee-Keun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.33-39
    • /
    • 2009
  • A microlens array (MLA) was developed based on the wet-etched quartz substrate and coating of UV adhesive on the substrate for maskless lithography application. The developed MLA has the focal length of ${\sim}45\;{\mu}m$ and the spot size of ${\sim}1\;{\mu}m$. The spot size of the focused beam passing through the MLA was detected by CCD camera, and its intensity was monitored by beam profiler. Uniform spots with nearly identical intensities were observed on the focal plane when a beam passes through the fabricated MLA. The focal length was varied depending on thickness of the coated UV adhesive. The thicker the thickness of the UV adhesive was, the shorter the focal length of the MLA was. With a general mask aligner, UV beam focusing was tested onto photoresist (PR). The beams were well focused onto PR when UV passes through the MLA. Depending on the variable distances from the MLA, beam sizes onto PR were controlled. Even at high temperature for a long time, the performances of the MLA were not changed.

  • PDF

An Implementation of Temperature Independent Bias Scheme in Voltage Detector (온도에 무관한 전압검출기의 바이어스 구현)

  • Moon, Jong-Kyu;Kim, Duk-Gyoo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.34-42
    • /
    • 2002
  • In this paper, we propose a temperature independent the detective voltage source in voltage detector. The value of a detective voltage source is designed to become m times of silicon bandgap voltage at zero absolute temperature. By properly choosing the temperature coefficient of diode, the temperature coefficient of a concave voltage nonlinearities generated by the ${\Delta}V_{BE}$ section of diode between base and emitter of transistors with a different area can be summed with convex nonlinearities the $V_{BE}$ voltage to achieve the near zero temperature coefficient of the detective voltage source. We designed that the value of a detective voltage can be varied by ${\Delta}V_{BE}$, the $V_{BE}$multiplier circuit and resistor. In order to verify the performance of a proposed detective voltage source, we manufactured the voltage detector IC for 1.9V which is fabricated in $6{\mu}m$ Bipolar technology and measured the operating characteristics, the temperature coefficient of a detective voltage. To reduce the deviation of a detective voltage in the IC process step, we introduced a trimming technology, ion implantation and an isotropic etching. In manufactured IC, the detective voltage source could achieve the stable temperature coefficient of 29ppm/$^{\circ}C$ over the temperature range of -30$^{\circ}C$ to 70$^{\circ}C$. The current consumption of a voltage detector constituted by the proposed detective voltage source is $10{\mu}A$ from 1.9V-supply voltage at room temperature.