• 제목/요약/키워드: isotropic carbon fiber

검색결과 52건 처리시간 0.022초

Spinning of Petroleum based Isotropic Pitch by Melt-blown Method

  • Kim, Chan;Lee, Su-Hyun;Kim, Young-Min;Yang, Kap-Seung
    • Carbon letters
    • /
    • 제3권1호
    • /
    • pp.33-38
    • /
    • 2002
  • Petroleum based isotropic pitch was spun into short fiber by melt-blown spinning technology. The processing parameters chosen were air velocity, die temperature, and throughput rate of the pitch within the ranges of experimental tolerances. The fiber diameter was reduced to $6{\mu}m$ by increases of hot air velocity, and spin die temperature. Also, the fiber diameter was strongly dependent on the throughput rate of the pitch and jet speed of hot air through the spinnerets. Even fibers with $10{\mu}m$ diameter were produced at throughput rate of $0.17g/min{\cdot}hole$ and at die temperature of $290^{\circ}C$.

  • PDF

가로 등방성 복합재료의 파동전파에 관한 연구 (The Wave Propagation in transversely isotropic composite laminates)

  • 김형원
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.422-425
    • /
    • 2005
  • 가로 등방성 복합재료에서 반사되거나 굴절된 파동의 속도와 입자방향, 그리고 진폭을 운동방정식과 구성방정식 그리고 파동수와 진동수로 표현된 변위식을 사용하여 구하였다. Snell 법칙을 사용하여 Eigenvalue 문제를 풀어 파동속도를 구하였으며 그 결과는 T300 Carbon fiber/5208 Epoxy 재료 성질을 이용하여 검증하였다. 이러한 분석은 수분 침수 C-scan을 이용하여 가로등방성 복합재료의 결점을 찾아내는데 응용될 수 있다.

  • PDF

가로 등방성 복합재료의 초음파에 관한 연구 (The Wave Propagation in Transversely Isotropic Composite Laminates)

  • 김형원
    • 한국추진공학회지
    • /
    • 제10권2호
    • /
    • pp.62-69
    • /
    • 2006
  • 가로 등방성 복합재료에서 반사되거나 굴절된 파동의 속도와 입자방향, 그리고 진폭을 운동방정식과 구성방정식 그리고 파동수와 진동수로 표현된 변위식을 사용하여 구하였다. Snell 법칙을 사용하여 Eigenvalue 문제를 풀어 파동속도를 구하였으며 그 결과는 T300 Carbon fiber/5208 Epoxy 재료 성질을 이용하여 검증하였다. 이러한 분석은 수분 침수 C-scan을 이용하여 가로등방성 복합재료의 결점을 찾아내는데 응용될 수 있다.

Improvement of CF/ABS Composite Properties by Anodic Oxidation of Pitch based C-type Carbon Fiber

  • Yang, Xiao Ping;Wang, Cheng Zhong;Yu, Yun Hua;Ryu, Seung-Kon
    • Carbon letters
    • /
    • 제3권2호
    • /
    • pp.80-84
    • /
    • 2002
  • The surface treatment of C-type isotropic pitch-based carbon fiber was carried out by anodic oxidation in 5 wt% $NH_4NO_3$ electrolyte. The changes of fiber surface and carbon fiber/ABS resin composites were characterized by SEM, XPS and mechanical properties test. The oxygen functional groups on the surface, such as hydroxyl (-C-OH), carboxyl (-COOH) groups etc., increased after oxidation. Tensile strength, flexural strength and modulus of carbon fiber/ABS composites were also enhanced. However, the impact strength decreased with the improvement of the surface adhesion between CF and matrix.

  • PDF

TEM Study of Micropores Developed on Pitch-based Carbon Fiber

  • Ryu, Seung-Kon;Lu, Ji Gui
    • Carbon letters
    • /
    • 제7권2호
    • /
    • pp.114-118
    • /
    • 2006
  • Isotropic pitch-based carbon fiber has been activated by steam diluted in nitrogen in order to characterize the microporosity. Especially, 40 wt% burn-off ACFs were prepared from different conditions to compare the pore structure and size. The ACFs were thinly sliced to investigate the inside pores by TEM and image analyzer. As expected, the adsorption characteristics of these ACFs were quite different from one another because of different pore structure and size. Most pores are not slit-shaped but rather round. Small round micropores become broad and irregular as increasing the activation time and temperature.

  • PDF

Relationship Between Exothermic Heat and Carbon Contents of Pitch-based Carbon Fiber

  • Lee, Jae-Young;Oh, Jong-Hyun;Yang, Xiao Ping;Ryu, Seung-Kon
    • Carbon letters
    • /
    • 제10권3호
    • /
    • pp.202-207
    • /
    • 2009
  • Pitch-based carbon fiber tows were prepared from naphtha cracking bottom oil by reforming and carbonization. The relationship between exothermic heat and carbon contents of the fiber was investigated by changing the carbonization conditions. The carbon contents and the crystallinities of isotropic pitch-based carbon fibers were 86.8~93.8 wt% and 33.7~40.1%, respectively, which were linearly proportional to the increase of carbonization temperature from 700 to $1000^{\circ}C$. The exothermic heat (temperature increase) of fiber tows was measured in a short time, which was also linearly proportional to the increase of carbon contents due to the increase of crystallinity, even though the crystallinity was low. Therefore, the carbon contents or carbonization degree of fibers can rapidly and indirectly be estimated by measuring the surface temperature increase of fibers.

Preparation of isotropic pitch precursor for pitch-based carbon fiber through the co-carbonization of ethylene bottom oil and polyvinyl chloride

  • Liu, Jinchang;Shimanoe, Hiroki;Nakabayashi, Koji;Miyawaki, Jin;Ko, Seunghyun;Jeon, Young-Pyo;Yoon, Seong-Ho
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.276-283
    • /
    • 2018
  • For the first time, polyvinyl chloride (PVC) was used as an easily-handled chlorine source for preparation of isotropic pitch-based carbon fiber (IPCF) incorporating ethylene bottom oil (EO) as a raw material. Pitch precursors were prepared by the chlorination-dehydrochlorination triggered by chlorine radicals originated from PVC; aromatization and poly-condensation reactions occurred by polyene-type radicals from PVC. Radical production and co-carbonization were facilitated by pretreatments of EO through vacuum distillation, bromination, and additional heat treatment. Pitches were prepared by the co-carbonization of pretreated EO and EO containing 20 wt% PVC, and had higher yields and better spinnability than those by simple distillation.

Thermal Anisotropy of Hollow Carbon Fiber-Carbon Composite Materials

  • Yang, Chun-Hoi;Shim, Hwan-Boh
    • 한국응용과학기술학회지
    • /
    • 제22권2호
    • /
    • pp.91-95
    • /
    • 2005
  • Carbon composites were prepared with pitch-based round, C, hollow-type carbon fibers and pitch matrix. The thermal conductivities parallel and perpendicular to the fiber axis were measured by steady-state method. It was found that the thermal conductivities depended on the cross-sectional forms of the reinforcing fibers as well as the reinforcing orientation and carbon fiber precusors. Especially, mesophase pitch-based hollow carbon fiber-carbon composites had the most excellent thermal anisotropy, which was above 100.

탄소섬유 Rod로 성능향상된 교량 바닥판의 피로거동 (The Fatigue behavior of strengthened bridge deck with Carbon Fiber Rod)

  • 심종성;김민수;김영호;주민관
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.313-318
    • /
    • 2002
  • The use of carbon fiber rods is a promising technology of increasing flexural and shear strength of deficient reinforced concrete members. The purpose of this experimental study is to investigate the fatigue behavior and strengthening effects of the strengthened bridge deck with isotropic and othortropic carbon fiber rod. This study shows a fatigue loading, compliance and S-N Curve between strengthened isotropically and othortropically. Then estimate the effective fatigue behavior of RC slab using composite rods that are inserted in high special purposed polymer mortar.

  • PDF

반복하중을 받는 교량바닥판의 보강을 위한 탄소섬유쉬트의 적용성에 대한 실험적 연구 (A Experimental Application of Carbon Fiber Sheet for Strenthening Bridge Decks received fatigue loads)

  • 심종성;오홍섭;김진하;김성엽
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.757-762
    • /
    • 2001
  • This study was performed experiment for strengthened bridge decks with isotropic carbon fiber sheets received fatigue loading, and compared with fatigue behavior of unstrengthened bridge decks. By the results, this study was examined effect of increasing strengthened to phase life cycles of bridge deck for fatigue loading and application of the punching shear theory of bridge deck strengthened by carbon fiber sheet.

  • PDF