• Title/Summary/Keyword: isotropic Berwald curvature

Search Result 3, Processing Time 0.013 seconds

ON A CLASS OF FINSLER METRICS WITH ISOTROPIC BERWALD CURVATURE

  • Zhu, Hongmei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.399-416
    • /
    • 2017
  • In this paper, we study a class of Finsler metrics called general (${\alpha},{\beta}$)-metrics, which are defined by a Riemannian metric ${\alpha}$ and a 1-form ${\beta}$. We show that every general (${\alpha},{\beta}$)-metric with isotropic Berwald curvature is either a Berwald metric or a Randers metric. Moreover, a lot of new isotropic Berwald general (${\alpha},{\beta}$)-metrics are constructed explicitly.

ISOTROPIC MEAN BERWALD FINSLER WARPED PRODUCT METRICS

  • Mehran Gabrani;Bahman Rezaei;Esra Sengelen Sevim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1641-1650
    • /
    • 2023
  • It is our goal in this study to present the structure of isotropic mean Berwald Finsler warped product metrics. We bring out the rich class of warped product Finsler metrics behaviour under this condition. We show that every Finsler warped product metric of dimension n ≥ 2 is of isotropic mean Berwald curvature if and only if it is a weakly Berwald metric. Also, we prove that every locally dually flat Finsler warped product metric is weakly Berwaldian. Finally, we prove that every Finsler warped product metric is of isotropic Berwald curvature if and only if it is a Berwald metric.

ON THE SECOND APPROXIMATE MATSUMOTO METRIC

  • Tayebi, Akbar;Tabatabaeifar, Tayebeh;Peyghan, Esmaeil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.115-128
    • /
    • 2014
  • In this paper, we study the second approximate Matsumoto metric F = ${\alpha}+{\beta}+{\beta}^2/{\alpha}+{\beta}^3/{\alpha}^2$ on a manifold M. We prove that F is of scalar flag curvature and isotropic S-curvature if and only if it is isotropic Berwald metric with almost isotropic flag curvature.