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ON A CLASS OF FINSLER METRICS WITH ISOTROPIC

BERWALD CURVATURE

Hongmei Zhu

Abstract. In this paper, we study a class of Finsler metrics called gen-
eral (α, β)-metrics, which are defined by a Riemannian metric α and a 1-
form β. We show that every general (α, β)-metric with isotropic Berwald
curvature is either a Berwald metric or a Randers metric. Moreover, a lot
of new isotropic Berwald general (α, β)-metrics are constructed explicitly.

1. Introduction

In Finsler geometry, the Berwald curvature is an important non-Riemannian
quantity. A Finsler metric F on a manifoldM is said to be of isotropic Berwald

curvature if its Berwald curvature Bj
i
kl satisfies

(1.1) Bj
i
kl = τ(x)(Fyjykδil + Fyjylδik + Fylykδij + Fyjykylyi),

where τ(x) is a scalar function onM . A Finsler metric is called a Berwald met-

ric if τ(x) = 0. Berwald metrics are just a bit more general than Riemannian
and locally Minkowskian metrics. A Berwald space is that all tangent spaces
are linearly isometric to a common Minkowski space.

Chen-Shen showed that a Finsler metric F is of isotropic Berwald curvature
if and only if it is a Douglas metric with isotropic mean Berwald curvature [6].
Tayebi-Rafie’s result tells us that every isotropic Berwald metric is of isotropic
S-curvature [16]. In [15], Tayebi-Najafi proved that isotropic Berwald metrics
of scalar flag curvature are of Randers type. Recently, Guo-Liu-Mo have shown
that every spherically symmetric Finsler metric of isotropic Berwald curvature
is a Randers metric [10]. Hence, isotropic Berwald metrics form a rich class of
Finsler metrics.

Let us look at two important examples.
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(a) In [2], Bao-Robles-Shen perturb the Euclidean metric. The resulting Ran-
ders metric F = α+ β, where

α : =

√

ε2(xu + yv + zw)2) + (u2 + v2 + w2)[1− ε2(x2 + y2 + z2)]

1− ε2(x2 + y2 + z2)
,

β : =
−ε(xu+ yv + zw)

1− ε2(x2 + y2 + z2)
,

is of constant S-curvature and satisfies dβ = 0. By using Chen-Shen
and Bacso-Matsumoto results, we obtain that F is a Douglas metric with
isotropic mean Berwald curvature [1, 6]. Hence, F is of isotropic Berwald
curvature.

(b) Consider a Minkowski norm ψ : Rn → R on Rn. By using the Minkowski
metric F (x, y) = ψ(y) and the homothetic field Vx = x, we produce the
Funk metric F̄ on the strongly convex domain Ω := {v ∈ Rn |ψ(v) < 1}
[9]. Then F̄ has isotropic Berwald curvature with τ = 1

2 [6]. In particular,
when ψ(y) = |y|, then

(1.2) F̄ =

√

(1− |x|2)|y|2 + 〈x, y〉2
1− |x|2 ± 〈x, y〉

1− |x|2 .

are the well-known Funk metrics on the unit ball Bn(1).

Randers metrics, which are introduced by a physicist G. Randers in 1941
when he studied general relativity, are an important class of Finsler metrics.
Generally, a Randers metric is of the form F = α+β, where α is a Riemannian
metric and β is a 1-form. But it can also be expressed in the following famous
navigation form

(1.3) F =

√

(1− b̄2)ᾱ2 + β̄2

1− b̄2
+

β̄

1− b̄2
,

where b̄ := ‖β̄x‖ᾱ. (ᾱ, β̄) is called the navigation data of the Randers metric
F . In [16], Tayebi-Rafie showed that if a Randers metric (1.3) is a non-trivial
isotropic Berwald metric, then β̄ is a conformal 1-form with respect to ᾱ,
namely, β̄ satisfies

b̄i|j + b̄j|i = c(x)āij ,

where c(x) 6= 0 and b̄i|j is the covariant derivation of β̄ with respect to ᾱ.
In fact, the navigation expression (1.3) of Randers metrics is also given in

the form

(1.4) F = αφ
(

b2,
β

α

)

,

where α is a Riemannian metric, β is a 1-form, b := ‖βx‖α and φ(b2, s) is
a smooth function. Such kind of Finsler metrics are called general (α, β)-

metrics [17, 18, 20]. If φ = φ(s) is independent of b2, then F = αφ(βα ) is



ON A CLASS OF FINSLER METRICS 401

an (α, β)-metric. If α = |y|, β = 〈x, y〉, then F = |y|φ(|x|2, 〈x,y〉|y| ) is the so-

called spherically symmetric Finsler metrics [12, 19]. Moreover, general (α, β)-
metrics include part of Bryant’s metrics [3, 17] and part of generalized fourth
root metrics [11]. That is to say, general (α, β)-metrics make up of a much
large class of Finsler metrics, which makes it possible to find out more Finsler
metrics to be of great properties. For example, in (α, β)-metric we can’t find
out any non-Ricci flat Einstein metric unless it is of Randers type [8]. The
main reason is that the category of (α, β) metrics is a little small. If we search
Einstein metrics in general (α, β)-metrics, then it is not hard to find out metrics
with positive and negative Ricci constant [14]. The classification of projective
general (α, β)-metrics with constant flag curvature has just been completed
recently by the author and C. Yu [18]. In this paper, we will show the following
classification theorem:

Theorem 1.1. Let F = αφ
(

b2, βα

)

be a regular general (α, β)-metric on an

n-dimensional manifold M . Suppose that β satisfies

(1.5) bi|j = caij ,

where c = c(x) 6= 0 is a scalar function on M . If F is of isotropic Berwald

curvature, then one of the following holds:

(1) F is a Berwald metric which can be expressed by

(1.6) F = αϕ(
s2

e
∫
( 1
b2

−b2t2))db2 + s2
∫

t2e
∫
( 1
b2

−b2t2)db2db2
)e

∫
( 1
2 b

2t2−
1
b2

)db2s,

where ϕ(·) is any positive continuously differentiable function and t2 is a

smooth function of b2.

(2) F is a Randers metric which can be expressed by

(1.7) F =
√

f(b2)α2 + g(b2)β2 + h(b2)β,

where the smooth functions f(b2), g(b2) and h(b2) satisfy

(1.8) f [2(f + gb2)h′ − (2f ′ + g′b2)h] = h(f + f ′b2)(g − h2),

where b2 = ‖β‖α, f ′ = ∂f
∂b2 , g

′ = ∂g
∂b2 and h′ = ∂h

∂b2 .

Remark. (1) we assume that β is closed and conformal with respect to α,
i.e., (1.5) holds. According to the relate discussions for isotropic Berwald
metrics [6, 10, 15, 16], we believe that the assumption here is reasonable
and appropriate.

(2) It should be pointed out that if the scalar function c(x) = 0, then according

to Proposition 3.1, Bj
i
kl = 0, namely, F = αφ

(

b2, βα

)

is a Berwald metric

for any function φ(b2, s). So it will be regarded as a trivial case. Moreover,
in the singular case, general (α, β)-metrics with isotropic Berwald curvature
also contain Kropina metric.
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By analyzing Eq. (1.8), we explicitly manufacture new Finsler metrics of
isotropic Berwald curvature and determine their isotropic S-curvature. Pre-
cisely, we prove the following theorem:

Theorem 1.2. The following Randers metric

(1.9) F =
√

f(b2)α2 + ε2f2(b2)β2 + εf(b2)β

has isotropic Berwald curvature, where β satisfies (1.5). Furthermore, its S-

curvature is given by

(1.10) S =
(n+ 1)ε

2

c(f + f ′b2)

f(1 + ε2fb2)
F,

where b2 := ‖β‖2α, c = c(x) is a scalar function on M . f = f(b2) is an any

differentiable function and ε is a constant.

Remark. (1) Take α = |y| and β = 〈x, y〉, then the corresponding general
(α, β)-metrics of (1.9) have isotropic Berwald curvature. They are just
spherically symmetric Finsler metrics ([10, Theorem 1.2]).

(2) Take α = |y| and β = 〈x, y〉 + 〈a, y〉, where a is a constant vector. When
f(b2) = 1

1+ξb2 , where ξ is a constant. Then the corresponding general

(α, β)-metrics of (1.9)

F =

√

[1 + ξ(|x|2 + 2〈a, x〉+ |a|2)]|y|2 + ε2(〈x, y〉 + 〈a, x〉)2
1 + ξ(|x|2 + 2〈a, x〉+ |a|2)

+
ε(〈x, y〉+ 〈a, x〉)

1 + ξ(|x|2 + 2〈a, x〉+ |a|2)
are of isotropic Berwald curvature and their S-curvature is given by S =
n+1
2

ε
1+(ε2+ξ)|x|2F . In particular, when ξ = −1 and ε = ±1, they are just the

generalized Funk metrics expressed in some other local coordinate system.
Furthermore, if a = 0, ξ = −1 and ε = ±1, then F is just the Funk metric
(1.2).

Finally, it is worth mentioning that the S-curvature is an important non-
Riemannian quantity in Finsler geometry [4, 7, 16]. It interacts with the flag
curvature in a mysterious way. Recently, Cheng-Shen have characterized (α, β)-
metrics with isotropic S-curvature [7].

2. Preliminaries

Let F be a Finsler metric on an n-dimensional manifold M and Gi be the
geodesic coefficients of F , which are defined by

Gi =
1

4
gil
{

[F 2]xkylyk − [F 2]xl

}

,

where (gij) :=
(

1
2 [F

2]yiyj

)−1
. For a Riemannian metric, the spray coefficients

are determined by its Christoffel symbols as Gi(x, y) = 1
2Γ

i
jk(x)y

jyk.
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Lemma 2.1 ([17]). Let F = αφ
(

b2, βα

)

be a general (α, β)-metric on an n-

dimensional manifold M . Then the function F is a regular Finsler metric for

any Riemannian metric α and any 1-form β if and only if φ(b2, s) is a positive

smooth function defined on the domain |s| ≤ b < bo for some positive number

(maybe infinity) bo satisfying

(2.1) φ− sφ2 > 0, φ− sφ2 + (b2 − s2)φ22 > 0,

when n ≥ 3 or

(2.2) φ− sφ2 + (b2 − s2)φ22 > 0,

when n = 2.

Let α =
√

aij(x)yiyj and β = bi(x)y
i. Denote the coefficients of the covari-

ant derivative of β with respect to α by bi|j , and let

rij =
1

2
(bi|j + bj|i), sij =

1

2
(bi|j − bj|i), r00 = rijy

iyj , si0 = aijsjky
k,

ri = bjrji, si = bjsji, r0 = riy
i, s0 = siy

i, ri = aijrj , s
i = aijsj , r = biri,

where (aij) := (aij)
−1 and bi := aijbj . It is easy to see that β is closed if and

only if sij = 0.

Lemma 2.2 ([17]). The spray coefficients Gi of a general (α, β)-metric F =

αφ
(

b2, βα

)

are related to the spray coefficients αGi of α and given by

Gi = αGi + αQsi0 +
{

Θ(−2αQs0 + r00 + 2α2Rr) + αΩ(r0 + s0)
} yi

α

+
{

Ψ(−2αQs0 + r00 + 2α2Rr) + αΠ(r0 + s0)
}

bi − α2R(ri + si),(2.3)

where

Q =
φ2

φ− sφ2
, R =

φ1

φ− sφ2
,

Θ =
(φ− sφ2)φ2 − sφφ22

2φ
(

φ− sφ2 + (b2 − s2)φ22
) , Ψ =

φ22

2
(

φ− sφ2 + (b2 − s2)φ22
) ,

Π =
(φ − sφ2)φ12 − sφ1φ22

(φ− sφ2)
(

φ− sφ2 + (b2 − s2)φ22
) , Ω =

2φ1
φ

− sφ+ (b2 − s2)φ2
φ

Π.

Note that φ1 means the derivation of φ with respect to the first variable b2.
In the following, we will introduce an important non-Riemannian quantity.

Definition 2.3 ([13]). Let

(2.4) Bj
i
kl :=

∂3Gi

∂yj∂yk∂yl
,

where Gi are the spray coefficients of F . The tensor B := Bj
i
kl∂i⊗dxj⊗dxk⊗

dxl is called Berwald tensor. A Finsler metric is called a Berwald metric if the
Berwald tensor vanishes, i.e., the spray coefficients Gi = Gi(x, y) are quadratic
in y ∈ TxM at every point x ∈M .
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Let γ(t) be the geodesic with γ(0) = x and γ̇(0) = y. Let

S(x, y) =
d

dt
[τ(γ(t)), γ̇(t)]|t=0,

where τ(x, y) is the distortion of F . S(x, y) is called the S-curvature [7, 9, 16].
F is said to have isotropic S-curvature if there is a scalar function κ(x) on M
such that

(2.5) S = (n+ 1)κ(x)F.

The following result is given in [5]. It is required in Section 5.

Lemma 2.4. Let F = α+β be a Randers metric on an n-dimensional manifold

M , where α =
√

aij(x)yiyj and β = bi(x)y
i. Suppose that β is closed. Then

F has isotropic S-curvature, i.e., (2.5) holds, if and only if

(2.6) bi|j = 2κ(x)(aij − bibj).

By a straightforward computation, we have the following lemma.

Lemma 2.5. Let

(2.7) ᾱ :=
√

f(b2)α2 + g(b2)β2

and

(2.8) β̄ := h(b2)β.

Then

b̄i|j = hbi|j + 2h′(rj + sj)bi − λ(f ′ + g′b2)[bi(rj + sj) + bj(ri + si)]

+ λ(f ′aij + g′bibj)r − λg(b2rij + sjbi + sibj),(2.9)

where λ := h
f+gb2 .

Proof. It follows from (2.7) and (2.8) that

(2.10) āij = faij + gbibj, b̄i = hbi.

By (2.10) and Chern-Shen’s Lemma 1.1.1 [9], we obtain

(2.11) āij =
1

f
(aij − g

f + gb2
bibj),

where (aij) = (a−1
ij ). Note that

(2.12) (b2)xi = 2(ri + si).

Differentiating the first equality with respect to xk yields

∂āij

∂xk
= f

∂aij

∂xk
+ 2f ′(rk + sk)aij + 2g′(rk + sk)bibj + g

( ∂bi

∂xk
bj +

∂bj

∂xk
bi
)

= f
∂aij

∂xk
+ 2f ′(rk + sk)aij + 2g′(rk + sk)bibj

+ g
[

(bi|k + btγ
t
ik)bj + (bi|k + btγ

t
ik)bj

]

,(2.13)
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where we have used (2.12). This implies that

γ̄kij :=
1

2
(
∂āik

∂xj
+
∂ājk

∂xi
− ∂āij

∂xk
)

= fγkij + f ′
[

aik(rj + sj) + ajk(ri + si)− aij(rk + sk)
]

+ g′
[

(rj + sj)bibk + (ri + si)bjbk − (rk + sk)bibj
]

+ g(rijbk + skjbi + skibj + btγ
t
ijbk).(2.14)

By (2.11) and (2.14), we have

γ̄lij = ālkγ̄kij

= γlij +
f ′

f
[δli(rj + sj) + δlj(ri + si)− aij(r

l + sl)]

+
g′

f

{ f

f + gb2
[(rj + sj)bib

l + (ri + si)bjb
l]

− (rl + sl)bibj +
rg

f + gb2
blbjbi

}

+
g

f

[ f

f + gb2
rijb

l + sljbi + slibj −
g

f + gb2
(sjbib

l + sibjb
l)
]

− f ′g

f(f + gb2)
[blbi(rj + sj) + blbj(ri + si)− aijb

lr],(2.15)

where r := biri. Together with the second equality of (2.10), we have

(2.16)
∂b̄i

∂xj
=
∂bi

∂xj
h+ 2h′(rj + sj)bi = h(bi|j + blγ

l
ij) + 2h′(rj + sj)bi.

By using (2.15) and (2.16), we have

b̄i|j =
∂b̄i

∂xj
− b̄lγ̄

l
ij

= hbi|j + 2h′(rj + sj)bi − hbl(γ̄
l
ij − γlij)

= hbi|j + 2h′(rj + sj)bi − λ(f ′ + g′b2)[bi(rj + sj) + bj(ri + si)]

+ λ(f ′aij + g′bibj)r − λg(b2rij + sjbi + sibj),(2.17)

where λ := h
f+gb2 . �

3. Berwald curvature of general (α, β)-metrics

In this section, we will compute the Berwald curvature of a general (α, β)-
metric.

Proposition 3.1. Let F = αφ
(

b2, βα

)

be a general (α, β)-metric on an n-

dimensional manifold M . Suppose that β satisfies (1.5), then the Berwald

curvature of F is given by

Bj
i
kl =

c

α

{

[(E − sE2)akl + E22blbk] δ
i
j
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+
1

α2

[ s

α
(3E22 + sE222)ylyj

−(E22 + sE222)blyj ] bky
i
}

(k → l → j → k)

− c

α2

{

sE22

[

(ykbl + ylbk)δ
i
j + ajlbky

i
]

+
1

α
(E − sE2 − s2E22)(ylδ

i
j + aljy

i)yk

}

(k → l → j → k)

+
c

α2

[

1

α3
(3E − 3sE2 − 6s2E22 − s3E222)ykyjyl + E222blbkbj

]

yi

+
c

α

[

(H2 − sH22)(bj −
s

α
yj)akl −

1

α2
(H2 − sH22 − s2H222)blyjyk

−sH222

α
bkblyj

]

bi(k → l → j → k)

+
c

α

[ s

α3
(3H2 − 3sH22 − s2H222)yjykyl +H222blbkbj

]

bi,(3.1)

where yi := aijy
j and bi := aijbj, c = c(x) 6= 0 is a scalar function on M .

E : =
φ2 + 2sφ1

2φ
−H

sφ+ (b2 − s2)φ2
φ

,(3.2)

H : =
φ22 − 2(φ1 − sφ12)

2
[

φ− sφ2 + (b2 − s2)φ22
] .(3.3)

Proof. By (1.5), we have

(3.4) r00 = cα2, r0 = cβ, r = cb2, ri = cbi, si0 = 0, s0 = 0, si = 0.

Substituting (3.4) into (2.3) yields

Gi = αGi + cα
{

Θ(1 + 2Rb2) + sΩ
}

yi + cα2
{

Ψ(1 + 2Rb2) + sΠ−R
}

bi

= αGi + cαEyi + cα2Hbi,(3.5)

where E and H are given by (3.2) and (3.3) respectively. Note that

(3.6) αyi =
yi

α
, syi =

αbi − syi

α2
,

where yi := aijy
j . Put

(3.7) W i := αEyi + α2Hbi.

Differentiating (3.7) with respect to yj yields

(3.8)
∂W i

∂yj
= αEδij + (Eαyj + αE2syj )yi +

{

[α2]yjH + α2H2syj

}

bi.

Differentiating (3.8) with respect to yk yields

∂2W i

∂yj∂yk
=
[

(Eαyk + αE2syk)δij + E2sykαyjyi +H2[α
2]yjsykbi

]

(k ↔ j)
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+
(

Eαyjyk + αE22syksyj + αE2syjyk

)

yi

+
{

[α2]yjykH + α2H22syksyj + α2H2syjyk

}

bi,(3.9)

where k ↔ j denotes symmetrization. Therefore, it follows from (3.9) that

∂3W i

∂yj∂yk∂yl
=
[

E2(αyksyl + αylsyk + αsykyl)

+ Eαykyl + αE22sylsyk

]

δij(k → l → j → k)

+
[

E2(sykαyjyl + αyksyjyl)

+ E22(αyksyj + αsykyj )syl

]

yi(k → l → j → k)

+ {H2

(

[α2]ykylsyj + [α2]yksyjyl

)

+H22

(

[α2]yksylsyj + α2sykylsyj

)

}bi(k → l → j → k)

+
(

Eαyjykyl + αE222syjsyksyl + αE2syjykyl

)

yi

+
{

H [α2]yjykyl + α2H222syjsyksyl + α2H2syjykyl

}

bi,(3.10)

where k → l → j → k denotes cyclic permutation. It follows from (3.6) that

[α2]yl = 2yl, [α
2]ylyj = 2alj , [α

2]ylyjyk = 0,

(3.11)

αylyj =
1

α

(

alj−
yl

α

yj

α

)

, αylyjyk = − 1

α3
[aklyj(k → l → j → k)− 3

α2
ylyjyk],

(3.12)

sylyj = − 1

α2

[

salj +
1

α
(blyj + bjyl)−

3s

α2
ylyj

]

,

(3.13)

sylyjyk =
1

α5

{

[α(3syj − αbj)alk + 3bkylyj ](k → l → j → k)− 15s

α
ykylyj

}

.

(3.14)

Plugging (3.11)-(3.14) into (3.10) yields

∂3W i

∂yj∂yk∂yl
=

1

α

{[

(E − sE2)akl + E22blbk
]

δij

+
1

α2

[ s

α
(3E22 + sE222)yl

−(E22 + sE222)bl
]

yjbky
i
}

(k → l → j → k)

− 1

α2

{

sE22

[

(ykbl + ylbk)δ
i
j + ajlbky

i
]

+
1

α
(E − sE2 − s2E22)(ylδ

i
j + ajly

i)yk}(k → l → j → k)

+
1

α2

[

1

α3
(3E− 3sE2− 6s2E22− s3E222)ykyjyl+E222blbkbj

]

yi
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+
1

α

[

(H2 − sH22)(bj −
s

α
yj)akl

− 1

α2
(H2 − sH22 − s2H222)blyjyk

−sH222

α
bkblyj

]

bi(k → l → j → k)

+
1

α

[ s

α3
(3H2 − 3sH22 − s2H222)yjykyl +H222blbkbj

]

bi.(3.15)

It follows from αGi(x, y) = 1
2Γ

i
jk(x)y

jyk that

(3.16)
∂3αGi

∂yj∂yk∂yl
= 0.

By (2.4), (3.5), (3.7), (3.15) and (3.16), we obtain (3.1). �

4. General (α, β)-metrics with isotropic Berwald curvature

In this section, we will classify general (α, β)-metrics with isotropic Berwald
curvature under certain condition. Firstly, we show the following:

Lemma 4.1. Suppose that β satisfies (1.5), then a general (α, β)-metric F =

αφ
(

b2, βα

)

is of isotropic Berwald curvature if and only if

E − sE2 − ρ(x)(φ − sφ2) = 0,(4.1)

H2 − sH22 = 0,(4.2)

where ρ(x) = τ(x)
c(x) , E and H are given by (3.2) and (3.3) respectively. In

particular, F is a Berwald metric if and only if E − sE2 = H2 − sH22 = 0.

Proof. For a general (α, β)-metric F = αφ(b2, s), a direct computation yields

Fyj = αyjφ+ αφ2syj ,

Fyjyk = αyjykφ+ (αyjsyk + αyksyj)φ2 + αφ22syksyj + αφ2syjyk ,(4.3)

Fyjykyl = [(αyjyksyl + αyjsykyl)φ2

+ (αyjsyl + αsyjyl)sykφ22](j → k → l → j)

+ αyjykylφ+ αφ222sylsyksyj + αφ2syjykyl .(4.4)

Plugging (3.6) and (3.12)-(3.14) into (4.3) and (4.4) yields

Fyjyk =
1

α
(φ− sφ2)ajk − sφ22

α2
(bkyj + bjyk) +

φ22

α
bjbk

− 1

α3
(φ − sφ2 − s2φ22)yjyk,(4.5)

Fyjykyl =
1

α2

[ 1

α
(sφ2 + s2φ22 − φ)aklyj +

s

α2
(3φ22 + sφ222)bkylyj − sφ22ajlbk

− 1

α
(φ22 + sφ222)blbjyk

]

(j → k → l → j)
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+
1

α5
(φ − 3sφ2 − 6s2φ22 − s3φ222)yjykyl +

1

α2
φ222blbkbj.(4.6)

Suppose that F is of isotropic Berwald curvature, by (1.1), (4.5) and (4.6), we
obtain

Bj
i
kl =

τ(x)

α

[

(φ− sφ2)ajk − sφ22

α
(bkyj + bjyk) + φ22bjbk

− 1

α2
(φ− sφ2 − s2φ22)yjyk

]

δil(j → k → l → j)

+
τ(x)

α2

[ 1

α
(sφ2 + s2φ22 − φ)aklyj +

s

α2
(3φ22 + sφ222)bkylyj

− sφ22ajlbk −
1

α
(φ22 + sφ222)blbjyk

]

yi(j → k → l → j)

+
τ(x)

α2

[ 1

α3
(3φ− 3sφ2 − 6s2φ22 − s3φ222)yjykyl + φ222blbkbj

]

yi.(4.7)

By (3.1) and (4.7), we obtain

(4.8) T1 + αT2 = 0,

where

T1 := α4
{

[E − sE2 − ρ(φ − sφ2)]aklδ
i
j + (E22 − ρφ22)blbkδ

i
j

+ (H2 − sH22)aklbj
}

(j → k → l → j)

− α2[E − sE2 − s2E22 − ρ(φ− sφ2 − s2φ22)]

(ylδ
i
j + aljy

i)yk(j → k → l → j) + α4H222blbkbjb
i

− α2
{

[E22 + sE222 − ρ(φ22 + sφ222)]bky
i

+ (H2 − sH22 − s2H222)ykb
i)
}

blyj(j → k → l → j)

+ [3E − 3sE2 − 6s2E22 − s3E222 − ρ(3φ− 3sφ2 − 6s2φ22 − s3φ222)]

yjykyly
i,(4.9)

T2 := − α2s
{

(E22 − ρφ22)[(ykbl + ylbk)δ
i
j + ajlbky

i]

+ [(H2 − sH22)yjakl +H222bkblyj ]b
i
}

(j → k → l → j)

+ s
[

3E22 + sE222 − ρ(3φ22 + sφ222)
]

ylyjbky
i(j → k → l → j)

+ α2(E222 − ρφ222)blbkbjy
i + s(3H2 − 3sH22 − s2H222)yjykylb

i.(4.10)

By (4.8), we know that

T1 = 0, T2 = 0.

For s 6= 0, it follows from T2y
jykyl = 0 that

(4.11) (E222 − ρφ222)y
i − αH222b

i = 0.

Both rational part and irrational part of (4.11) equal zero, namely

(4.12) E222 − ρφ222 = 0, H222 = 0.
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Plugging (4.12) into T2 = 0 yields

− α2
{

(E22 − ρφ22)[(ykbl + ylbk)δ
i
j + ajlbky

i]

+ (H2 − sH22)aklyjb
i
}

(j → k → l → j)

+ 3(E22 − ρφ22)ylyjbky
i(j → k → l → j)

+ 3(H2 − sH22)yjykylb
i = 0.(4.13)

Contracting (4.13) by bjbkbl yields
(4.14)
(E22 − ρφ22)b

2(b2 − 3s2)yi +αs[2b2(E22 − ρφ22) + (H2 − sH22)(b
2 − s2)]bi = 0.

Hence, it follows from (4.14) that

(4.15) E22 − ρφ22 = 0, H2 − sH22 = 0.

Inserting (4.12) and (4.15) into T1 = 0 yields

[E − sE2 − ρ(φ− sφ2)]
{

α2[α2aklδ
i
j − (ylδ

i
j + aljy

i)yk](j → k → l → j)

(4.16)

+ 3yjykyly
i
}

= 0.

Multiplying (4.16) by bjbkbl yields

(4.17) [E − sE2 − ρ(φ− sφ2)](b
2 − s2)(αbi − syi) = 0.

Hence, it is easy to see from (4.17) that

(4.18) E − sE2 − ρ(φ− sφ2) = 0.

Note that

E222 − ρφ222 = (E22 − ρφ22)2,

s(E22 − ρφ22) = −
[

E − sE2 − ρ(φ− sφ2)
]

2
,

sH222 = −(H2 − sH22)2.

Therefore, (4.18) implies that the first equalities of (4.12) and (4.15) hold. The
second equality of (4.15) implies that the second equality of (4.12) holds. More-
over, if a general (α, β)-metric F = αφ(b2, s) is of isotropic Berwald curvature,
then (4.1) and (4.2) hold.

Conversely, suppose that (4.1) and (4.2) hold. Setting ψ := E− ρ(x)φ, then
(4.1) is equivalent to

(4.19) ψ − sψ2 = 0.

By solving Eq. (4.19), we obtain ψ = 1
2σ(b

2)s. Hence,

(4.20) E − ρ(x)φ =
1

2
σ(b2)s.

By (4.2), there exist two functions t1(b
2) and t2(b

2) such that

(4.21) H =
1

2

[

t1(b
2) + t2(b

2)s2
]

.
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By (3.5), (4.20) and (4.21),

Gi − τ(x)Fyi = αGi + c(x)αEyi + c(x)α2Hbi − τ(x)Fyi

= αGi + α
[

c(x)E − τ(x)φ
]

yi +
1

2
c(x)α2

[

t1(b
2) + t2(b

2)s2
]

bi

= αGi +
1

2
c(x)

{

σ(b2)βyi + [t1(b
2)α2 + t2(b

2)β2]bi
}

.(4.22)

Hence, Gi are quadratic in y = yi ∂
∂xi |x. On the other hand, it follows from

(2.4) that

(4.23)
(Gi − τ(x)Fyi)yjykyl

= Bj
i
kl − τ(x)(Fyjykδil + Fyjylδik + Fylykδij + Fyjykylyi).

Using (4.22) and (4.23), we obtain that F = αφ(b2, s) is of isotropic Berwald
curvature.

Observe that F is a Berwald metric if and only if its Berwald curvature
Bj

i
kl = 0. By (1.1), we obtain that F is a Berwald metric if and only if

τ(x) = 0, i.e., ρ(x) = 0. Hence, by the above process of proof, we get that F is
a Berwald metric if and only if E − sE2 = H2 − sH22 = 0. �

Let F = αφ
(

b2, βα

)

be a general (α, β)-metric with isotropic Berwald cur-

vature. From Lemma 4.1 and its proof, we see that there exist three functions
σ(b2), t1(b

2) and t2(b
2) such that (4.20) and (4.21) hold. Plugging (4.20)-(4.21)

into (3.2) and (3.3) yields

φ2 + 2sφ1
2φ

− 1

2
(t1 + t2s

2)
sφ+ (b2 − s2)φ2

φ
= ρφ+

1

2
σs,(4.24)

φ22 − 2(φ1 − sφ12)

2
[

φ− sφ2 + (b2 − s2)φ22
] =

1

2

(

t1 + t2s
2
)

,(4.25)

where we use ρ, σ, t1 and t2 instead of ρ(x), σ(b2), t1(b
2) and t2(b

2), respec-
tively. (4.24) and (4.25) are equivalent to

[

1−(t1 + t2s
2)(b2 − s2)

]

φ2+2sφ1 − s
[

(t1 + t2s
2) + σ

]

φ− 2ρφ2 = 0,(4.26)

[

1−(b2 − s2)(t1 + t2s
2)
]

φ22−2φ1 + 2sφ12 + s(t1 + t2s
2)φ2 − (t1 + t2s

2)φ = 0.

(4.27)

Differentiating (4.26) with respect to s yields
[

1− (t1 + t2s
2)(b2 − s2)

]

φ22 + 2φ1 + 2sφ12(4.28)

+ s
(

t1 − σ − 2b2t2 + 3t2s
2
)

φ2 −
(

t1 + σ + 3t2s
2
)

φ− 4ρφφ2 = 0.

From (4.28)− (4.27), we obtain

(4.29) 4φ1 − s
[

2t2(b
2 − s2) + σ

]

φ2 − (σ + 2t2s
2)φ− 4ρφφ2 = 0.

From (4.26)× 2− (4.29)× s, we obtain

(4.30)
[

2− 2t1(b
2 − s2) + σs2

]

φ2 − (2t1 + σ)sφ− 4ρφ2 + 4ρsφφ2 = 0.
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Note that (4.30) is equivalent to

(4.31)
(2− 2t1(b

2 − s2) + σs2

φ2

)

2
+
(8ρs

φ

)

2
= 0.

Case 1. ρ 6= 0
1) 2− 2t1(b

2 − s2) + σs2 6= 0.
Integrating (4.31) yields

(4.32) φ =
4ρs+

√

2k(1− t1b2) + (16ρ2 + 2kt1 + kσ)s2

k
,

where k = k(b2) is any non-zero smooth function. Then the corresponding
general (α, β)-metric F = αφ(b2, s) is a Randers metric.

2) 2− 2t1(b
2 − s2) + σs2 = 0.

In this case, (4.31) is reduced to ( s
φ)2 = 0, it is easy to obtain that φ = s

a(b2) .

Hence, the corresponding general (α, β)-metric F = αφ(b2, s) is a Kropina
metric. This metric is singular. We will omit it because the Finsler metric
discussed is assumed to be regular.
Case 2. ρ = 0

In this case, it follows from (1.1) that F is a Berwald metric. (4.30) is
reduced to

(4.33)
[

2− 2t1(b
2 − s2) + σs2

]

φ2 − (2t1 + σ)sφ = 0.

i) 2− 2t1(b
2 − s2) + σs2 6= 0.

By (4.33), we obtain

(4.34) φ = t3(b
2)
√

2(1− b2t1) + (σ + 2t1)s2,

where t3(b
2) is any positive smooth function. Hence, in this case, the corre-

sponding general (α, β)-metric F = αφ(b2, s) is a Riemannian metric.
ii) 2− 2t1(b

2 − s2) + σs2 = 0.
Note that φ > 0 and s 6= 0. In this case, (4.33) is equivalent to

(4.35) σ + 2t1 = 0, 2− 2(b2 − s2)t1 + σs2 = 0.

By (4.35), we have

(4.36) σ = − 2

b2
, t1 =

1

b2
.

In this case, (4.29) imply that (4.26) holds. By the above calculations, it is
easy to see that (4.26) and (4.29) imply (4.27). Therefore, we only need to
solve (4.29). Plugging (4.36) into (4.29) yields

(4.37) φ1 +
1

2
s[

1

b2
− (b2 − s2)t2]φ2 =

1

2
(− 1

b2
+ t2s

2)φ.

The characteristic equation of PDE (4.37) is

(4.38)
db2

1
=

ds
1
2s[

1
b2 − (b2 − s2)t2]

=
dφ

1
2 (− 1

b2 + t2s2)φ
.
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Firstly, we solve

(4.39)
db2

1
=

ds
1
2s[

1
b2 − (b2 − s2)t2]

.

(4.39) is equivalent to

ds

db2
=

1

2
(
1

b2
− b2t2)s+

1

2
t2s

3.

This is a Bernoulli equation which can be rewritten as

d

db2

(

1

s2

)

=

(

b2t2 −
1

b2

)

1

s2
− t2.

This is a linear 1-order ODE of 1
s2 . One can easily get its solution

(4.40)
1

s2
= e

∫
(b2t2−

1
b2

)db2
[

c̃1 −
∫

t2e
∫
( 1
b2

−b2t2)db
2

db2
]

,

where c̃1 is a constant. Hence, by (4.40), one independent integral of Eq. (4.38)
is

(4.41)
s2

e
∫
( 1
b2

−b2t2))db2 + s2
∫

t2e
∫
( 1
b2

−b2t2)db2db2
=

1

c̃1
.

Note that the characteristic equation (4.38) is equivalent to

(4.42)
db2

1
=

d ln s
1
2 [

1
b2 − (b2 − s2)t2]

=
d lnφ

1
2 (− 1

b2 + t2s2)
.

Eq. (4.42) implies

(4.43)
db2

1
=
d ln s− d lnφ

1
b2 − 1

2b
2t2

.

By integrating Eq. (4.43), we obtain another independent integral of Eq. (4.38)

(4.44) ln
s

φ
−
∫

(
1

b2
− 1

2
b2t2)db

2 = c̃2,

where c̃2 is a constant. Hence, the general solution of Eq. (4.37) is
(4.45)

Φ

(

s2

e
∫
( 1
b2

−b2t2))db2 + s2
∫

t2e
∫
( 1
b2

−b2t2)db2db2
, ln

s

φ
−
∫

(
1

b2
− 1

2
b2t2)db

2

)

= 0,

where Φ(ξ, η) is any continuously differentiable function. Suppose Φ′
η 6= 0, then

we can solve from (4.45) that

(4.46) φ = ϕ(
s2

e
∫
( 1
b2

−b2t2))db2 + s2
∫

t2e
∫
( 1
b2

−b2t2)db2db2
)e

∫
( 1
2 b

2t2−
1
b2

)db2s,
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where ϕ(·) is any positive continuously differentiable function. Hence, the
corresponding general (α, β)-metric is

F = αϕ(
s2

e
∫
( 1
b2

−b2t2))db2 + s2
∫

t2e
∫
( 1
b2

−b2t2)db2db2
)e

∫
( 1
2 b

2t2−
1
b2

)db2s.

Therefore, by the above discussion, we have the following theorem.

Theorem 4.2. Let F = αφ
(

b2, βα

)

be a regular general (α, β)-metric on an

n-dimensional manifold M . Suppose that β satisfies (1.5). If F is of isotropic

Berwald curvature, then F is either a Berwald metric or a Randers metric.

5. Isotropic Berwald metrics of Randers type

In this section, we will prove Theorems 1.1 and 1.2. Suppose that β satisfies
(1.5), we have the following.

Lemma 5.1. Let F := ᾱ+ β̄ be any function defined by (2.7) and (2.8). Then

1-form β̄ is closed. Moreover, F is a Randers metric if and only if

(5.1) f(b2) > max{0, b2(h2 − g)(b2)},
where b := ‖β‖α.
Proof. Since β satisfies (1.5), it is easy to see that

(5.2) si = 0, ri = c(x)bi, r := biri = c(x)b2.

Plugging (5.2) into (2.9) yields

(5.3) b̄i|j = cλ(f + f ′b2)aij + c
[

2h′ − λ(2f ′ + g′b2)
]

bibj ,

where λ := h
f+gb2 . It follows from (5.3) that s̄ij = 0. Hence, the 1-form β̄ is

closed.
By (2.10) and (2.11), we have

(5.4) det(āij) = (f + gb2)fn−1 det(aij), b̄
2 := ‖β̄‖2ᾱ = āij b̄ib̄j =

h2b2

f + gb2
.

Because F = α + β is a Randers metric, it implies that α is positive definite
and ‖β̄‖ᾱ < 1. Hence,

(5.5) f > 0, f + gb2 > 0, f + (g − h2)b2 > 0.

From (5.5), we will obtain (5.1) easily. �

From (2.10), we have

(5.6) āij − b̄ib̄j = faij + (g − h2)bibj.

By Lemma 5.1, we know that β̄ is closed. Together with Lemma 2.4, F has
isotropic S-curvature if and only if (2.6) holds. By (5.3) and (5.6), (2.6) holds
if and only if

(5.7) cλ(f + f ′b2)aij + c
[

2h′ −λ(2f ′ + g′b2)
]

bibj = 2κ(x)[faij +(g− h2)bibj ].



ON A CLASS OF FINSLER METRICS 415

Eq. (5.7) is equivalent to (1.8). In this case, we have

κ(x) = κ(b2) =
ch

2f

f + f ′b2

f + gb2
.

Thus, we obtain the following theorem.

Theorem 5.2. Let F = ᾱ + β̄ be a Randers metric on an n-dimensional

manifold M defined by (2.7) and (2.8). Then F has isotropic S-curvature if

and only if (1.8) holds. In this case, the S-curvature is given by

(5.8) S =
(n+ 1)ch

2f

f + f ′b2

f + gb2
F.

Proof of Theorem 1.2. Let us take a look at the special case. When g = h2,
the Randers metric is given by F =

√

f(b2)α2 + h2(b2)β2 + h(b2)β. By using
(1.8), F has isotropic S-curvature if and only if

(5.9) 0 = 2(f + h2b2)h′ − (2f ′ + (h2)′b2)h = 2(fh′ − f ′h) = 2
(h

f

)′
,

where we have used f(b2) > 0 in Lemma 5.1. It is easy to see from (5.9) that
h
f = ε, where ε is a constant. Plugging this into (5.8), we obtain (1.10). �

Proof of Theorem 1.1. Let F = αφ(b2, s) be a general (α, β)-metric with
isotropic Berwald curvature on an n-dimensional manifold M . By Theorem
4.2, we obtain that F is either a Berwald metric given by (1.6) or a Randers
metric expressed by (1.7). By Theorem 1.1 in [16], F is of isotropic S-curvature.
From Theorem 5.2, f , g and h in (1.7) satisfy (1.8). Thus, we complete the
proof of the theorem. �
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