• Title/Summary/Keyword: isotherm

Search Result 1,187, Processing Time 0.026 seconds

Adsorption Isotherms of 2-deoxyuridine (dUrd) and 2-deoxycytidine (dCyd) by Static Method (정적 방법에 의한 2-deoxyuridine(dUrd)과 2-deoxycytidine(dCyd)의 흡착 평형식)

  • Lee, Kwang-Jin;Lee, Sang-Hoon;Row, Kyung-Ho;Um, Byung-Hun
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.111-114
    • /
    • 2008
  • Adsorption isotherm with the most fundamental information related to chromatography process is obtained experimentally. The adsorption isotherm of 2-deoxyuridine (dUrd) and 2-deoxycytidine (dCyd) with ${\mu}$-Bondapak $C_{18}$, static method was adopted in RP-HPLC. The concentrations of mobile and stationary phases were measured with different initial concentrations of dUrd and dCyd, 1, 3, 5, 7, 10 mg/mL, respectively. The adsorption isotherm data were applied by Freundlich, Langmuir, Sips, and Radke-Prausnitz model equations. As a result of the regression analysis, standard error between adsorption isotherm of dUrd and Radke-Prausnitz equation was very low, and adsorption isotherm of dCyd was in an agreement with Sips equation very well.

Experiment on Chloride Adsorption by Calcium Aluminate Phases in Cement (시멘트내 칼슘 알루미네이트 상에 의한 염소이온의 흡착반응 연구)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.389-397
    • /
    • 2017
  • Friedel's salt is an important product of chemical adsorption between cement hydrate and chloride ions because it contains chlorine in its structure. When cement reacts with water in the presence of chloride ions, the $C_3A$ phase, and $C_4AF$ phase react with chloride to produce Friedel's salt. If chloride ions penetrate into concrete from external environments, many calcium aluminate hydrates, including AFm, can bind chloride ions. It is very important, therefore, to investigate the chloride binding isotherm of $C_3A$ phase, $C_4AF$ phase, and AFm phase to gain a better understanding of chloride binding in cementitious materials. Meanwhile, the adsorption isotherm can provide us with the fundamental information for the understanding of adsorption process. The experimental results of the isotherm can supply not only the quantitative knowledge of the cement-Friedel's salt system, but also the mechanism of adsorption and the properties of their interactions. The purpose of this study is to explore the time dependant behaviors of chloride ions adsorption with $C_3A$, $C_4AF$ and AFm phases. The chloride adsorption isotherm was depicted with Langmuir isotherm and the adsorption capacity was low in terms of the stoichiometric point of view. However, the chloride adsorption of AFm phase was depicted with Freundlich isotherm and the value was very low. Since the amount of the adsorption was governed by temperature, the affecting parameters of isotherm were expressed as a function of temperature.

Pure and Binary Gases Adsorption Equilibria of CO2/CO/CH4/H2 on Li-X Zeolite (Li-X 제올라이트에서의 CO2/CO/CH4/H2 단일성분 및 혼합성분의 흡착평형)

  • Park, Ju-Yong;Yang, Se-il;Choi, Do-Young;Jang, Seong-Cheol;Lee, Chang-Ha;Choi, Dae-Ki
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.175-183
    • /
    • 2008
  • Adsorption equilibria of the gases $CO_2$, CO, $CH_4$ and $H_2$ and their binary mixtures on Li-X zeolite (UOP) were obtained by static volumetric method in the pressure range of 0 to 20 bar at temperatures of 293.15, 303.15, and 313.15 K. Using the parameter obtained from single-component adsorption isotherm. Multicomponent adsorption equilibra could be predicted and compared with experimental data. Extended Langmuir isotherm, Extended Langmuir-Freundlich isotherm (L-F) and dual-site Langmuir isotherm (DSL) were used to predict the experimental results for binary adsorption equilibria of $H_2/CO_2$, $H_2/CO$, and $H_2/CH_4$ on Li-X Zeolite. Extended Langmuir-Freundlich isotherm predicted equilibria of $CH_4$ and $H_2$ better than any other isotherm. One the other hand DSL isotherm predicted equilibria of $CO_2$ and CO very well.

Atmospheric Effects on Corrosion of Iron in Borate Buffer Solution (Borate 완충용액에서 철의 부식에 대한 대기의 영향)

  • Kim, Hyun-Chul;Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.6
    • /
    • pp.673-678
    • /
    • 2012
  • Using potentiodynamic and linear polarization method, the atmospheric effect on the corrosion of iron in borate buffer solution was investigated. The corrosion of iron was heavily influenced by the degree of oxygen concentration. The supply of reduction current was increased by the reduction of dissolved oxygen, and the corrosion potential of iron was shifted to the positive side. The $OH^-$ ion, which was produced through the reduction of either water or oxygen, significantly increased the $OH^-$ ion concentration inside of the electrical double layers of iron electrode, and facilitated the adsorption of $OH^-$ ion on the surface of the iron electrode. The adsorption of $OH^-$ ion on the iron electrode can be explained either by Langmuir isotherm or by Temkin logarithmic isotherm.

Biosorption of Heavy Metal Sons by Biomass of Marine Brown Algae in Cheju using Their immobilization Techniques: Biosorption of Copper by Undaria pinnatifida

  • Sang-Kyu Kam;Min-Gyu Lee
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.157-166
    • /
    • 1992
  • The biosorptlon perFormances of copper were Investigated by the immobilized biomass of nonliving marine brown algae Undaria pinnatifida by each of the Ca-alginate method(Ca-ALG), Ba-alginate method(Ba-ALG), polyethylene glycol method(PEG), and carrageenan method (CARR). The copper removal performance increased but the copper uptake decreased as the biomass amount was increased. However, the copper uptake by the immobilized biomass increased with increasing initial copper concentration. Among the immobilization methods, the copper uptake decreased in the following sequence: Ca-ALG > Ba-ALG > PEG > CARR. The pattern of copper uptake by the immobilized biomass fitted the Langmuir isotherm better than the Freundlich isotherm. Desorption of deposited copper with 0.05 ~0.5M HCI, resulted in no changes of the copper uptake capacity of the immobilized biomass by the immobilization methods except for PEG, through five subsequent biosorptioydesorption cycles. There was no damage to the immobilized biomass which retained its macroscopic appearance in repeated copper uptake/elution cycles.

  • PDF

Adsorption Kinetic and Isotherm Characteristics of Mn Ions with Zeolitic Materials Synthesized from Industrial Solid Waste (산업폐기물로부터 합성된 제올라이트 물질의 망간 이온 흡착속도 및 등온흡착 특성)

  • Choi, Jeong-Hak;Lee, Chang-Han
    • Journal of Environmental Science International
    • /
    • v.29 no.8
    • /
    • pp.827-835
    • /
    • 2020
  • Zeolite material having XRD peaks of Na-A zeolite in the 2θ range of 7.18 to 34.18 can be synthesized from the waste catalyst using a fusion/hydrothermal method. The adsorption rate of Mn ions by a commercial Na-A zeolite and the synthesized zeolitic material increased as the adsorption temperature increased in the range of 10 ~ 40℃. The adsorption of Mn ion were very rapid in the first 30 min and then reached to the equilibrium state after approximately 60 min. The adsorption kinetics of Mn ions by the commercial Na-A zeolite and the zeolitic material were found to be well fitted to the pseudo-2nd order kinetic model. Equilibrium data by the commercial Na-A zeolite and the zeolitic material fit the Langmuir, Koble-Corrigan, and Redlich-Peterson isotherm models well rather than Freundlich isotherm model. The removal capacity of the Mn ions by the commercial Na-A zeolite and the zeolitic material obtained from the Langmuir model was 135.2 mg/g and 128.9 mg/g at 30℃, respectively. The adsorption capacity of Mn ions by the synthesized zeolitic material was almost similar to that of commercial Na-A zeolite. The synthesized zeolitic material could be applied as an economically feasible commercial adsorbent.

Adsorption Characteristics of As and Se Ions by HTMAB Modified Anthracite (HTMAB로 표면처리된 안트라사이트에 의한 비소 및 셀렌 이온의 흡착 특성)

  • Kim, Jeung-Bea
    • Journal of Environmental Science International
    • /
    • v.27 no.3
    • /
    • pp.167-177
    • /
    • 2018
  • The removal characteristics of As and Se ions from aqueous solution by hexadecyl trimethyl ammonium bromide (HTMAB) modified anthracite (HTMAB-AT) were investigated under various conditions of contact time, pH and temperature. When the pH is 6, the zeta potential value of anthracite (AT) is -24 mV and on the other hand, the zeta potential value of the HTMAB-AT is +44 mV. It can be seen that the overall increase of about 60 mV. Increasing the (+) potential value indicates that the surface of the adsorbent had a stronger positive charge, so adsorption for the anion metal was increased. The isotherm data was well described by Langmuir and Temkin isotherm model. The maximum adsorption capacity was found to be 7.81 and 6.89 mg/g for As and Se ions from the Langmuir isotherm model at 298 K, respectively. The kinetic data was tested using pseudo first and pseudo second order models. The results indicated that adsorption fitted well with the pseudo second order kinetic model. The mechanism of the adsorption process showed that adsorption was dependent on intra particle diffusion model according to two step diffusion. The thermodynamic parameters(${\Delta}G^{\circ}$, ${\Delta}H^{\circ}$, and ${\Delta}S^{\circ}$) were also determined using the equilibrium constant value obtained at different temperatures. The thermodynamic parameters indicated that the adsorption process was physisorption, and also an endothermic and spontaneous process.

Isotherm, Kinetic and Thermodynamic Characteristics for Adsorption of Acenaphthene onto Sylopute (실로퓨트에 의한 아세나프텐 흡착에 관한 등온흡착식, 동역학 및 열역학적 특성)

  • Cho, Da-Nim;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.127-134
    • /
    • 2020
  • The adsorption characteristics of the major tar compound, acenaphthene, derived from Taxus chinensis by the commercial adsorbent Sylopute were investigated using different parameters such as initial acenaphthene concentration, adsorption temperature, and contact time. Out of Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models, adsorption data were best described by Langmuir isotherm. The adsorption kinetics was evaluated by pseudo-first-order, pseudo-second-order and intraparticle diffusion models. The pseudo-second-order model was found to explain the adsorption kinetics most effectively. Thermodynamic parameters revealed the feasibility, nonspontaneity and exothermic nature of adsorption. In addition, the isosteric heat of adsorption was independent of surface loading indicating the Sylopute used as an energetically homogeneous surface.

Determination of the Frumkin and Temkin Adsorption Isotherms of Underpotentially Deposited Hydrogen at Pt Group Metal Interfaces Using the Standard Gibbs Energy of Adsorption and Correlation Constants

  • Chun, Jinyoung;Jeon, Sang K.;Chun, Jang H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.4
    • /
    • pp.211-216
    • /
    • 2013
  • At Pt(111), Pt(100), Pt, and Rh interfaces, the Frumkin adsorption isotherm of underpotentially deposited hydrogen (UPD H) and related electrode kinetic data are determined using the standard Gibbs energy of adsorption. The Temkin adsorption isotherm of UPD H correlating with the Frumkin adsorption isotherm of UPD H is readily determined using the correlation constants between the Temkin and Frumkin or Langmuir adsorption isotherms. At the Pt(111), Pt(100), Pt, and Rh interfaces, the lateral repulsive interaction between the UPD H species is interpreted using the interaction parameter for the Frumkin adsorption isotherm. The lateral repulsive interaction between the UPD H species at the Pt(111), Pt(100), Pt, and Rh interfaces is significantly different from the lateral attractive interaction between the overpotentially deposited hydrogen (OPD H) species at Pt, Ir, and Pt-Ir alloy interfaces.

Simple and Efficient Synthesis of Iron Oxide-Coated Silica Gel Adsorbents for Arsenic Removal: Adsorption Isotherms and Kinetic Study

  • Arifin, Eric;Cha, Jinmyung;Lee, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2358-2366
    • /
    • 2013
  • Iron oxide (ferrihydrite, hematite, and magnetite) coated silica gels were prepared using a low-cost, easily-scalable and straightforward method as the adsorbent material for arsenic removal application. Adsorption of the anionic form of arsenic oxyacids, arsenite ($AsO^{2-}$) and arsenate ($AsO{_4}^{3-}$), onto hematite coated silica gel was fitted against non-linear 3-parameter-model Sips isotherm and 2-parameter-model Langmuir and Freundlich isotherm. Adsorption kinetics of arsenic could be well described by pseudo-second-order kinetic model and value of adsorption energy derived from non-linear Dubinin-Radushkevich isotherm suggests chemical adsorption. Although arsenic adsorption process was not affected by the presence of sulfate, chloride, and nitrate anions, as expected, bicarbonate and silicate gave moderate negative effects while the presence of phosphate anions significantly inhibited adsorption process of both arsenite and arsenate. When the actual efficiency to remove arsenic was tested against 1 L of artificial arsenic-contaminated groundwater (0.6 mg/L) in the presence competing anions, the reasonable amount (20 g) of hematite coated silica gel could reduce arsenic concentration to below the WHO permissible safety limit of drinking water of $10{\mu}g/L$ without adjusting pH and temperature, which would be highly advantageous for practical field application.