Browse > Article
http://dx.doi.org/10.5012/jkcs.2012.56.6.673

Atmospheric Effects on Corrosion of Iron in Borate Buffer Solution  

Kim, Hyun-Chul (Department of Chemistry, College of Natural Science, Hankuk University of Foreign Studies)
Kim, Younkyoo (Department of Chemistry, College of Natural Science, Hankuk University of Foreign Studies)
Publication Information
Abstract
Using potentiodynamic and linear polarization method, the atmospheric effect on the corrosion of iron in borate buffer solution was investigated. The corrosion of iron was heavily influenced by the degree of oxygen concentration. The supply of reduction current was increased by the reduction of dissolved oxygen, and the corrosion potential of iron was shifted to the positive side. The $OH^-$ ion, which was produced through the reduction of either water or oxygen, significantly increased the $OH^-$ ion concentration inside of the electrical double layers of iron electrode, and facilitated the adsorption of $OH^-$ ion on the surface of the iron electrode. The adsorption of $OH^-$ ion on the iron electrode can be explained either by Langmuir isotherm or by Temkin logarithmic isotherm.
Keywords
Iron; Oxide film; Adsorption; Langmuir; Temkin;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; J. A. Franklin, Ed. (Engl. Transl.); Nat. Assoc. Corr. Eng.: Houston, 1974; pp 307-321.
2 Heusler, K. E. Iron. In Encyclopedia of Electrochemistry of the Elements; A. J. Bard, Ed.; Marcel Dekker: New York, 1982; Vol. IX, Part A, pp 311-356.
3 Drazic, D. M. Iron and its Electrochemistry in an active state. In Modern Aspect of Electrochemistry; B. E. Conway; J.O'M. Bockris; R. E. White, Eds.; Plenum Press: New York, 1989; Vol. 19, p 69.
4 Bockris, J. O'M.; Khan, S. U. M. Surface Electrochemistry, A Molecular Level Approach; Plenum Press: New York, 1993; pp 756-771 and 780-791.
5 Bockris, J. O'M.; Reddy, A. K. N. Modern Electrochemistry 2B; Kluwer Academic/Plenum Publishers: New York, 2000; pp 1666-1680.
6 Toney, M.; Davenport, A. J.; Oblonsky, L. J.; Ryan, M. P.; Vitus, C. M. Phys. Rev. Lett. 1997, 79(21), 4282.   DOI   ScienceOn
7 Kurosaki, M.; Seo, M. Corros. Sci. 2003, 45, 2597.   DOI
8 Allongue, P.; Joiret, S. Phys. Rev. B 2005, 71, 115407-1.   DOI
9 Deng, H.; Nanjo, H.; Qian, P.; Santosa, A.; Ishikawa, I.; Kurata, Y. Electrochim. Acta 2007, 52, 4272.   DOI
10 Chien, J.; Huang, K.; Liu, S. Corros. Sci. 2008, 50, 1982.   DOI
11 Flis, J.; Flis-Kabulska, I.; Zakroczymski, T. Electrochim. Acta 2009, 54, 1810.   DOI
12 Harrington, S. P.; Wang, F.; Devine, T. M. Electrochim. Acta 2010, 55, 4092.   DOI
13 Krishnamurthy, B.; Gorsostiza, P. Electrochem. Commun. 2006, 8, 1810.
14 Raja, K. S.; Jones, D. A. Corros. Sci. 2006, 48, 1623.   DOI
15 Lee, J.-B.; Kim, S.-W. Mater. Chem. Phys. 2007, 104, 98.   DOI
16 Wielant, T.; Goosens, V.; Hausbrand, R.; Terryn, H. Electrochim. Acta 2007, 52, 7617.   DOI
17 Kim, H.; Kim, Y. J. Korean Chem. Soc. 2012, 56(5), in press.
18 Chung, S.; Kim, Y. J. Korean Chem. Soc. 2011, 55, 575.   DOI
19 Bockris, J. O'M.; Khan, S. U. M. Surface Electrochemistry, A Molecular Level Approach; Plenum Press: New York, 1993; pp 266 and 334-335.