• Title/Summary/Keyword: isometric

Search Result 845, Processing Time 0.026 seconds

Reactivity of Human Isolated Gastroepiploic Artery to Constrictor and Relaxant Agents (위대망동맥의 혈관 수축제 및 이완제에 대한 반응)

  • 이종태;이응배;박창률;김인겸;유완식;유영선
    • Journal of Chest Surgery
    • /
    • v.31 no.9
    • /
    • pp.884-892
    • /
    • 1998
  • Background: The gastroepiploic artery is not only an alternative graft but also may be considered an important primary graft for coronary revascularization. However, the long-term patency of the gastroepiploic arterial graft is yet to be determined and the incidence of perioperative spasm and long-term patency of a coronary graft may be affected by the properties of the graft response to certain vasoactive substances. The reactivity of the gastroepiploic artery to vasoactive substances has not been studied extensively and the results of the studies are contradictory. Material and Method: This study was designed to test the reactivity of human gastroepiploic artery to four constrictors and four relaxants. The middle sections of the human gastroepiploic arteries were collected from the patients undergoing gastrectomy and the arterial rings with intact endothelium were suspended in organ baths for isometric tension recording. Result: Epinephrine, norepinephrine, and potassium chloride induced the maximum constriction to higher forces (7.0$\pm$1.1g, 6.6$\pm$0.9g, and 6.5$\pm$1.1g) than 5-hydroxytryptamine did (3.8$\pm$1.7g, p<0.05). Nitroprusside and histamine induced almost full relaxation in the gastroepiploic arteries preconstricted with norepinephrine. There was no significant difference between two relaxants regarding maximum relaxation force. Acetylcholine induced the maximum relaxation to weaker force when compared with nitroprusside and histamine (p<0.05), and isoproterenol was the weakest of the relaxants (p<0.05 compared with acetylcholine). Conclusion: The gastroepiploic artery has a strong capacity of endothelium-dependent relaxation which could have an important influence on long-term patency. The gastroepiploic artery exhibits a potent contractility to catecholamines and the enhanced contractility may facilitate vasospasm in the presence of high circulating levels of catecholamines. Nitroprusside, a potent relaxant in gastroepiploic artery, might be beneficial for the treatment of gastroepiploic arterial graft spasm. The gastroepiploic arterial graft with intact endothelium may respond weakly to beta-adrenoceptor agonist and 5-hydroxytryptamine.

  • PDF

Effect of Magnesium on the Contractility of the Isolated Guinea-Pig Aortic and Rat Smooth Muscles (마그네슘이온이 적출한 기니피그 대동맥평활근과 흰쥐 자궁평활근의 수축성에 미치는 효과에 관한 연구)

  • Ahn, Hyuk;Hwang, Sang-Ik
    • Journal of Chest Surgery
    • /
    • v.23 no.3
    • /
    • pp.452-464
    • /
    • 1990
  • It is well known that extracellular Calcium plays a very important role in several steps of smooth muscle excitability and contractility, and there have been many concerns about factors influencing the distribution of extracellular Ca++ and the Ca++ flux through the cell membrane of the smooth muscle. Based on the assumption that Mg++ may also play an important role in the excitation and contraction processes of the smooth muscle by taking part in affecting Ca++ distribution and flux, many researches are being performed about the exact role of Mg++, especially in the vascular smooth muscle. But yet the effect of Mg++ in the smooth muscle activity is not clarified, and moreover the mechanism of Mg++ action is almost completely unknown. Present study attempted to clarify the effect of Mg++ on the excitability and contractility in the multiunit and unitary smooth muscle, and the mechanism concerned in it. The preparations used were the guinea-pig aortic strip as the experimental material of the multiunit smooth muscle and the rat uterine strip as the one of the unitary smooth muscle. The tissues were isolated from the sacrificed animal and were prepared for recording the isometric contraction. The effects of Mg++ and Ca++ were examined on the electrically driven or spontaneous contraction of the preparations. And the effects of these ions were also studied on the K+ or norepinephrine contracture. All experiments were performed in tris-buffered Tyrode solution which was aerated with 100% 02 and kept at 35oC. The results obtained were as follows: 1] Mg++ suppressed the phasic contraction induced by electrical field stimulation dose-dependently in the guinea-pig aortic strip, while the high concentration of Ca++ never recovered the decreased tension. These phenomena were not changed by the a - or b - adrenergic blocker. 2]Mg++ played the suppressing effect on the low concentration [20 and 40 mM] of K+-contracture in the aortic muscle, but the effect was not shown in the case of 100mM K+-contracture. 3] Mg++ also suppressed the contracture induced by norepinephrine in the aortic preparation. And the effect of Mg++ was most prominent in the contracture by the lowest [10 mM] concentration of norepinephrine. 4] In both the spontaneous and electrically driven contractions of the uterine strip, Mg++ decreased the amplitude of peak tension, and by the high concentration of Ca++ the amplitude of tension was recovered unlike the aortic muscle. 5] The frequency of the uterine spontaneous contraction increased as the [Ca++] / [Mg++] ratio increased up to 2, but the frequency decreased above this level. 6] Mg++ decreased the tension of the low[20 and 40mM] K+-contracture in the uterine smooth muscle, but the effect did not appear in the 100mM K+-contracture. From the above results, the following conclusion could be made. 1] Mg++ seems to suppress the contractility directly by acting on the smooth muscle itself, besides through the indirect action on the nerve terminal, in both the aortic and uterine smooth muscles. 2] The fact that the depressant effect of Mg++ on the K+-contracture is in inverse proportion to an increase of K+ concentration appears resulted from the extent of the opening state of the Ca++ channel. 3] Mg++ may play a depressant role on both the potential dependent and the receptor-operated Ca++ channels. 4] The relationship between the actions of Mg++ and Ca++ seems to be competitive in uterine muscle and non-competitive in aortic strip.

  • PDF

Comparision of Trans-Tibial and Anteromedial Portal Approach in Femoral Tunneling of Anterior Cruciate Ligament Reconstruction (전방십자인대 재건술의 대퇴골 터널 굴착시 경경골 접근법과 전내측통로 접근법의 비교)

  • Sohn, Sung-Keun;Chang, Yun-Suk;Chung, ll-Kwon;Kim, Kyung-Taek
    • Journal of the Korean Arthroscopy Society
    • /
    • v.8 no.2
    • /
    • pp.75-81
    • /
    • 2004
  • Purpose: Recent development and advances in arthroscopic surgical techniques for Anterior Cruciate Ligament(ACL) reconstruction have led to the ideal location for the etric point from 10 o'clock (in right knee) and 13:30 (in left knee) to 10:30 (in right knee) and 14 o'clock (in left knee) in the frontal plane. This study was performed to compare operative methods and the radiologic results of femoral tunnels made through the tibial tunnel(trans-tibial approach) and the anteromedial portal. Material and Methods: From January 2003 to May 2004, one-hundred reconstructions of anterior cruciate ligament were performed. Group I (femoral tunnel through tibial tunnel) was composed of 50 cases and group ll (femoral tunnel through anteromedial portal) was consisted of 50 cases. The study was performed to compare the radiographic results of femoral tunnels made through the tibial tunnel and the anteromedial portal and operative methods. Results: In operative methods at Group II, femoral tunnel was made more easily at isometric point than Group I, a good visual field was achived because 100$^{\circ}$ flxion of knee, they can be reduced risk of posterior cortical breakage and tunnel-graft mismatching and decreased divergence of femoral interference screw in radiology (P<0.05). The angle between femoral tunnel and longitudinal axis of ACL wae increased at Group ll. Conclusion: Aanteromedial portal technique was more useful in ACL reconstruction for femoral tunnel toward 10 o'clock to10:30(in right) or 1:30 to 2 o'clock(in left).

  • PDF

Regulatory Mechanism of Vascular Contractility by Extracellular $\textrm{K}^{+}$: Effect on Endothelium-Dependent Relaxation and Vascular Smooth Muscle Contractility (세포 외 $\textrm{K}^{+}$의한 혈관 수축신 조절 기전: 혈관평활근 수축성과 내피세포 의존성 이완에 미치는 영향)

  • 유지영;설근희;서석효;안재호
    • Journal of Chest Surgery
    • /
    • v.37 no.3
    • /
    • pp.210-219
    • /
    • 2004
  • Extracellular $K^{+}$ concentration ([ $K^{+}$]$_{0}$ ) can be increased within several mM by the efflux of intracellular $K^{+}$. To investigate the effect of an increase in [ $K^{+}$]$_{0}$ on vascular contractility, we attempted to examine whether extracellular $K^{+}$ might modulate vascular contractility, endothelium-dependent relaxation (EDR) and intracellular $Ca^2$$^{+}$ concentration ([C $a^2$$^{+}$]$_{i}$ ) in endothelial cells (EC). We observed isometric contractions in rabbit carotid, superior mesenteric, basilar arteries and movse aorta. [C $a^2$$^{+}$]$_{i}$ was recorded by microfluorimeter using Fura-2/AM in EC. No change in contractility was recorded by the increase in [ $K^{+}$]$_{0}$ from 6 to 12 mM in conduit artery such as rabbit carotid artery. whereas resistant vessels, such as basilar and branches of superior mesenteric arteries (SMA), were relaxed by the increase. In basilar artery, the relaxation by the increase in [ $K^{+}$]$_{0}$ to from 1 to 3 mM was bigger than that by the increase from 6 to 12 mM. In contrast, in branches of SMA, the relaxation by the increase in [ $K^{+}$]$_{0}$ to from 6 to 12 mM is bigger than that by the increase from 1 to 3 mM. $Ba^2$$^{+}$ (30 $\mu$M) did not inhibit the relaxation by the increase in [ $K^{+}$]$_{0}$ from 1 to 3 mM but did inhibit the relaxation by the increase from 6 to 12 mM. In the mouse aorta without the endothelium or treated with $N^{G}$_nitro-L-arginine (30 $\mu$M), nitric oxide synthesis blocker, the increase in [ $K^{+}$]$_{0}$ from 6 to 12 mM did not change the magnitude of contraction induced either norepinephrine or prostaglandin $F_2$$_{\alpha}$. The increase in [ $K^{+}$]$_{0}$ up to 12 mM did not induce contraction of mouse aorta but the increase more than 12 mM induced contraction. In the mouse aorta, EDR was completely inhibited on increasing [ $K^{+}$]$_{0}$ from 6 to 12 mM. In cultured mouse aorta EC, [C $a^2$$^{+}$]$_{i}$ , was increased by acetylcholine or ATP application and the increased [C $a^2$$^{+}$]$_{i}$ , was reduced by the increase in [ $K^{+}$]$_{0}$ reversibly and concentration-dependently. In human umbilical vein EC, similar effect of extracellular $K^{+}$ was observed. Ouabain, a N $a^{+}$ - $K^{+}$ pump blocker, and N $i^2$$^{+}$, a N $a^{+}$ - $Ca^2$$^{+}$ exchanger blocker, reversed the inhibitory effect of extracellular $K^{+}$. In resistant arteries, the increase in [ $K^{+}$]$_{0}$ relaxes vascular smooth muscle and the underlying mechanisms differ according to the kinds of the arteries; $Ba^2$$^{+}$-insensitive mechanism in basilar artery and $Ba^2$$^{+}$ -sensitive one in branches of SMA. It also inhibits [C $a^2$$^{+}$]$_{i}$ , increase in EC and thereby EDR. The initial mechanism of the inhibition may be due to the activation of N $a^{+}$ - $K^{+}$pump. activation of N $a^{+}$ - $K^{+}$pump.p.p.p.

Studies on the Functional Interrelation between the Vestibular Canals and the Extraocular Muscles (미로반규관(迷路半規管)과 외안근(外眼筋)의 기능적(機能的) 관계(關係)에 관(關)한 연구(硏究))

  • Kim, Jeh-Hyub
    • The Korean Journal of Physiology
    • /
    • v.8 no.2
    • /
    • pp.1-17
    • /
    • 1974
  • This experiment was designed to explore the specific functional interrelations between the vestibular semicircular canals and the extraocular muscles which may disclose the neural organization, connecting the vestibular canals and each ocular motor nuclei in the brain system, for vestibuloocular reflex mechanism. In urethane anesthetized rabbits, a fine wire insulated except the cut cross section of its tip was inserted into the canals closely to the ampullary receptor organs through the minute holes provided on the osseous canal wall for monopolar stimulation of each canal nerve. All extraocular muscles of both eyes were ligated and cut at their insertio, and the isometric tension and EMG responses of the extraocular muscles to the vestibular canal nerve stimulation were recorded by means of a physiographic recorder. Upon stimulation of the semicircular canal nerve, direction if the eye movement was also observed. The experimental results were as follows. 1) Single canal nerve stimulation with high frequency square waves (240 cps, 0. 1 msec) caused excitation of three extraocular muscles and inhibition of remaining three muscles in the bilateral eyes; stimulation of any canal nerve of a unilateral labyrinth caused excitation (contraction) of the superior rectus, superior oblique and medial rectus muscles and inhibition (relaxation) of the inferior rectus, inferior oblique and lateral rectos muscles in the ipsilateral eye, and it caused the opposite events in the contralateral eye. 2) By the overlapped stimulation of triple canal nerves of a unilateral labyrinth, unidirectional (excitatory or inhibitory) summation of the individual canal effects on a given extraocular muscles was demonstrated, and this indicates that three different canals of a unilateral vestibular system exert similar effect on a given extraocular muscles. 3) Based on the above experimental evidences, a simple rule by which one can define the vestibular excitatory and inhibitory input sources to all the extraocular muscles is proposed; the superior rectus, superior oblique and medial rectus muscles receive excitatory impulses from the ipsilateral vestibular canals, and the inferior rectus, inferior oblique and lateral rectus muscles from the contralateral canals; the opposite relationship applies for vestibular inhibitory impulses to the extraocular muscles. 4) According to the specific direction of the eye movements induced by the individual canal nerve stimulation, an extraocutar muscle exerting major role (a muscle of primary contraction) and two muscles of synergistic contraction could be differentiated in both eyes. 5) When these experimental results were compared to the well known observations of Cohen et al. (1964) made in the cats, extraocular muscles of primary contraction were the same but those of synergistic contraction were partially different. Moreover, the oblique muscle responses to each canal nerve excitation appeared to be all identical. However, the responnes of horizontal (medial and lateral) and vertical (superior and inferior) rectus muscles showed considerable differences. By critical analysis of these data, the author was able to locate theoretical contradictions in the observations of Cohen et al. but not in the author's results. 6) An attempt was also made to compare the functional observation of this experiment to the morphological findings of Carpenter and his associates obtained by degeneration experiments in the monkeys, and it was able to find some significant coincidence between there two works of different approach. In summary, the author has demonstrated that the well known observations of Cohen et al. on the vestibulo-ocular interrelation contain important experimental errors which can he proved by theoretical evaluation and substantiated by a series of experiments. Based on such experimental evidences, a new rule is proposed to define the interrelation between the vestibular canals and the extraocular muscles.

  • PDF