Regulatory Mechanism of Vascular Contractility by Extracellular $\textrm{K}^{+}$: Effect on Endothelium-Dependent Relaxation and Vascular Smooth Muscle Contractility

세포 외 $\textrm{K}^{+}$의한 혈관 수축신 조절 기전: 혈관평활근 수축성과 내피세포 의존성 이완에 미치는 영향

  • 유지영 (한림대학교 강동성심병원 응급의학과) ;
  • 설근희 (이화여자대학교 의과대학 생리학교실) ;
  • 서석효 (이화여자대학교 의과대학 생리학교실) ;
  • 안재호 (이화여자대학교 목동병원 흉부외과학교실)
  • Published : 2004.03.01

Abstract

Extracellular $K^{+}$ concentration ([ $K^{+}$]$_{0}$ ) can be increased within several mM by the efflux of intracellular $K^{+}$. To investigate the effect of an increase in [ $K^{+}$]$_{0}$ on vascular contractility, we attempted to examine whether extracellular $K^{+}$ might modulate vascular contractility, endothelium-dependent relaxation (EDR) and intracellular $Ca^2$$^{+}$ concentration ([C $a^2$$^{+}$]$_{i}$ ) in endothelial cells (EC). We observed isometric contractions in rabbit carotid, superior mesenteric, basilar arteries and movse aorta. [C $a^2$$^{+}$]$_{i}$ was recorded by microfluorimeter using Fura-2/AM in EC. No change in contractility was recorded by the increase in [ $K^{+}$]$_{0}$ from 6 to 12 mM in conduit artery such as rabbit carotid artery. whereas resistant vessels, such as basilar and branches of superior mesenteric arteries (SMA), were relaxed by the increase. In basilar artery, the relaxation by the increase in [ $K^{+}$]$_{0}$ to from 1 to 3 mM was bigger than that by the increase from 6 to 12 mM. In contrast, in branches of SMA, the relaxation by the increase in [ $K^{+}$]$_{0}$ to from 6 to 12 mM is bigger than that by the increase from 1 to 3 mM. $Ba^2$$^{+}$ (30 $\mu$M) did not inhibit the relaxation by the increase in [ $K^{+}$]$_{0}$ from 1 to 3 mM but did inhibit the relaxation by the increase from 6 to 12 mM. In the mouse aorta without the endothelium or treated with $N^{G}$_nitro-L-arginine (30 $\mu$M), nitric oxide synthesis blocker, the increase in [ $K^{+}$]$_{0}$ from 6 to 12 mM did not change the magnitude of contraction induced either norepinephrine or prostaglandin $F_2$$_{\alpha}$. The increase in [ $K^{+}$]$_{0}$ up to 12 mM did not induce contraction of mouse aorta but the increase more than 12 mM induced contraction. In the mouse aorta, EDR was completely inhibited on increasing [ $K^{+}$]$_{0}$ from 6 to 12 mM. In cultured mouse aorta EC, [C $a^2$$^{+}$]$_{i}$ , was increased by acetylcholine or ATP application and the increased [C $a^2$$^{+}$]$_{i}$ , was reduced by the increase in [ $K^{+}$]$_{0}$ reversibly and concentration-dependently. In human umbilical vein EC, similar effect of extracellular $K^{+}$ was observed. Ouabain, a N $a^{+}$ - $K^{+}$ pump blocker, and N $i^2$$^{+}$, a N $a^{+}$ - $Ca^2$$^{+}$ exchanger blocker, reversed the inhibitory effect of extracellular $K^{+}$. In resistant arteries, the increase in [ $K^{+}$]$_{0}$ relaxes vascular smooth muscle and the underlying mechanisms differ according to the kinds of the arteries; $Ba^2$$^{+}$-insensitive mechanism in basilar artery and $Ba^2$$^{+}$ -sensitive one in branches of SMA. It also inhibits [C $a^2$$^{+}$]$_{i}$ , increase in EC and thereby EDR. The initial mechanism of the inhibition may be due to the activation of N $a^{+}$ - $K^{+}$pump. activation of N $a^{+}$ - $K^{+}$pump.p.p.p.

외부 자극에 의하여 세포 내 $Ca^2$$^{+}$이 증가하면 세포 내 $K^{+}$이 유출되어 세포 외 $K^{+}$ 농도는 수 mM 범위에서 증가할 수 있다. 이러한 세포 외 $K^{+}$의 증가가 혈관 수축성에 미치는 영향을 규명하고자, 세포 외 $K^{+}$가 혈관평활근 수축성, 내피세포 의존성 이완과 혈관내피세포 $Ca^2$$^{+}$ 농도에 미치는 영향을 알아보고자 하였다. 토끼에서 분리한 경동맥, 상장간막동맥 분지, 기저동맥과 쥐의 대동맥에서 등장성 수축을 기록하였으며 배양한 쥐의 대동맥 혈관내피세포와 인간 제대정맥 내피세포에서 세포 내 $Ca^2$$^{+}$ 변화를 측정하였다. 세포 외 $K^{+}$ 농도를 6에서 12 mM로 증가하는 경우 도관동맥인 토끼 경동맥은 수축성에 변화가 없는 반면 저항혈관인 기저동맥과 상장간막동맥분지는 이완하였다. 이러한 $K^{+}$ 유발 이완은 혈관 종류에 따라 차이가 있었는데 기저동맥에서는 세포 외 $K^{+}$ 농도를 6에서 12 mM로 증가하였을 때보다 세포 외 $K^{+}$ 농도를 1에서 3 mM로 증가하였을 때 더 크게 이완하였으며 상장간막동맥의 분지에서는 반대로 세포 외 $K^{+}$ 농도를 6에서 12 mM로 증가하였을 때 더 크게 이완하였다. 그리고 세포 외 $K^{+}$ 농도를 6에서 12 mM로 증가하였을 때의 이완은 $Ba^2$$^{+}$에 의하여 억제되는 반면 1에서 3 mM로 증가에 의한 이완은 억제되지 않았다. 쥐 대동맥에서도 토끼 경동맥과 동일한 효과가 관찰되었는데 세포 외 $K^{+}$ 농도를 6 mM에서 12 mM로 변화시켜도 norepinephrine혹은 prostaglandin $F_2$$_{\alpha}$에 의한 수축력은 유의한 변화가 없었다. 또한 세포 외 $K^{+}$ 농도를 점차 증가시키는 경우 12 mM 이상 증가가 되면 혈관평활근이 수축하기 시작하였지만 12 mM 이하의 증가에 의해서는 혈관평활근의 수축력은 증가하지 않았다. 한편 쥐 대동맥에서 acetylcholine에 의하여 유발된 내피세포 의존성 이완은 세포 외 $K^{+}$ 농도를 정상 6 mM에서 12 mM로 증가시키면 억제되었다. 한편 배양한 쥐 대동맥 내피세포에서는 acetylcholine 혹은 ATP에 의하여 세포 내 $Ca^2$$^{+}$이 증가하였다. 증가한 세포 내 $Ca^2$$^{+}$은 세포 외 $K^{+}$농도를 6 mM에서 12 mM로 증가시키면 가역적 및 농도 의존적으로 감소하였다. 세포 외 $K^{+}$ 증가에 의한 세포 내 $Ca^2$$^{+}$ 억제 효과는 인간 제대정맥 내피세포에서도 관찰되었다. 그리고 세포 외 $K^{+}$ 증가에 의한 내피세포 의존성 이완의 억제효과는 $Na^{+}$- $K^{+}$ pump 억제제인 ouabain과 $Na^{+}$-C $a^2$$^{+}$exchanger 억제제인 N $i^2$$^{+}$에 의하여 억제되었다. 이러한 실험 결과로 미루어 세포 외 $K^+$의 증가는 저항혈관 평활근을 이완시키는데 그 기전은 혈관 종류에 따라 차이가 있었다. 그리고 세포 외 $K^{+}$의 증가는 혈관내피세포 $Ca^2$$^{+}$을 감소시켜 내피세포 의존성 이완을 억제하는데 이는 $Na^2$$^{+}$- $K^2$$^{+}$pump를 활성화시켜 일어나는 것으로 생각된다.

Keywords

References

  1. Nature v.288 The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acerylcholine Furchgott,R.F.;Zawadzki,J.V. https://doi.org/10.1038/288373a0
  2. BR J Pharmacol v.93 Endothelim-dependent hyperpolarization of canine coronary smooth muscle FEletou,M.;Vanhoute,P.M. https://doi.org/10.1111/j.1476-5381.1988.tb10306.x
  3. J Mol Cell Cardiol v.31 NO: the primary EDRF Fleming,I.;Busse,R. https://doi.org/10.1006/jmcc.1998.0839
  4. Nature v.327 Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor Palmer,R.M.;Ferige,A.G.;Moncada,S. https://doi.org/10.1038/327524a0
  5. Faseb J v.3 Endothelium-derived relaxing and contracting factors Furchgon,R.F.;Vanhoute,P.M. https://doi.org/10.1096/fasebj.3.9.2545495
  6. Blood Vessels v.24 Endothelium-dependent contraction in arteries and veins Vanhoute,P.M.
  7. Nature v.332 A novel potent vasoconstrictor peptide produced by vascular endothelial cells Yanagisawa,M.;Kurhara,H.;Kirmuri,S.(et al.) https://doi.org/10.1038/332411a0
  8. Annu Rev Physiol v.57 Endothelium as on endocrine organ Inagami,T.;Naruse,M.;Hoover,R. https://doi.org/10.1146/annurev.ph.57.030195.001131
  9. Nature v.325 Single strech-activated ion channels in vascular endothelial cells as mechanotransducers? Lansmen,J.B.;Hallam,T.J.;Rink,T.J. https://doi.org/10.1038/325811a0
  10. Annu Rev Physiol v.59 Ion channels in vascular endothelium Nillius,B.;Viana,F.;Droogmans,G. https://doi.org/10.1146/annurev.physiol.59.1.145
  11. Nature v.396 $K^{+}$is an endothelium-derived hyperpolarizing factor in rat arteries Edwards,G.;Dora,K.A.;Gardener,M.I.;Garland,C.J.;Weston,A.H. https://doi.org/10.1038/24388
  12. Am J Physiol v.275 Characterization of the cloned human intermediate-conductance Ca²-activated $K^+$channel Jensen,B.S.;Streabaek,D.;Christophersen,P.(et al.) https://doi.org/10.1152/ajpcell.1998.275.3.C848
  13. J Membr Biol v.167 Induction of Ca²-activated $K^+$curent and transient outward currents in human capillary endothelial cells Jow,F.;Sullivan,K.;Sokol,P.;Numann,R. https://doi.org/10.1007/s002329900471
  14. Circ Res v.31 Perivascular potassium and pH as detrminants of local pial arterial diometer in cats Kuschinsky,W.;Wahl,M.;Bosse,O.;Thurau,K. https://doi.org/10.1161/01.RES.31.2.240
  15. Am J Physiol v.259 Ponassium dilates rat cerebral arteries by twp idependent mechanism McCarron,J.G.;Halpern,W.
  16. Pharmacologist v.22 ATP relaxes rabbit aortic smooth muscle by both on indirect action via endothelial cells and a direct action Furchgon,R.F.;Zawadzki,J.V.
  17. J Cell Biol v.107 Role of laminin and basement membrane in the morphological differentiation of human endthelial cells into capillary-like structures Kubota,Y.;Kleinman,H.K.;Martin,G.R.;Lawley,T.J. https://doi.org/10.1083/jcb.107.4.1589
  18. Lab Invest v.57 Isolation of rat aortic endothelial cells by primary explant techniques and their phenotypic modulation defined by substrata McGuire,P.G.;Orkin,R.W.
  19. v.40 The interavction of plasminogen activator wiht a reconstituted basement membrane matrix and extracellular macromolecules produced by cultured epithelial cells McGuire,P.G.;Seeds,N.W.
  20. Am J Physiol v.272 Downregulation of volume-activated CI currents during muscle differentiation Voets,T.;Wei,L.;De Smet P.(et al.) https://doi.org/10.1152/ajpcell.1997.272.2.C667