• Title/Summary/Keyword: isolation method

Search Result 1,598, Processing Time 0.028 seconds

Sequential Fault Detection and Isolation for Redundant Inertial Sensor Systems with Uncertain Factors

  • Kim, Jeong-Yong;Yang, Cheol-Kwan;Shim, Duk-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2594-2599
    • /
    • 2003
  • We consider some problems of the Modified SPRT(Sequential Probability Ratio Test) method for fault detection and isolation of inertial redundant sensor systems and propose an Advanced SPRT method to solve the problems of the Modified SPRT method. One problem of the Modified SPRT method to apply to inertial sensor system comes from the effect of inertial sensor errors such as misalignment, scale factor error and sensor bias in the parity vector, which make the Modified SPRT method hard to be applicable. The other problem is due to the correlation of parity vector components which may induce false alarm. We use a two-stage Kalman filter to remove effects of the inertial sensor errors and propose the modified parity vector and the controlled parity vector which removes the effect of correlation of parity vector components. The Advanced SPRT method is derived form the modified parity vector and the controlled parity vector. Some simulation results are presented to show the usefulness of the Advanced SPRT method to redundant inertial sensor systems.

  • PDF

Design and Modeling of a 3-DOF Precision Stage for Vibration Isolation (제진을 위한 3 자유도 정밀 스테이지의 설계와 모델링)

  • Moon, Jun-Hee;Kim, Hwa-Soo;Pahk, Heui-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.124-133
    • /
    • 2007
  • Active vibration isolation systems need the following performance specifications which are different from those of existing positioning systems: usage of seismic sensors, strict suppression of phase lead/lag in signal processing for sensors and actuators, excellent control in low frequency range and so on. In consideration of such specifications, a 3-DOF precision stage for vibration isolation is designed and modeled based on the physical characteristics. Then the major parameters such as spring constants and damping coefficients are valued by the system identification method using empirical transfer function. Finite element analysis is used as a verification and simulation tool throughout this research. This paper lays the foundation for the future research on the control of the active vibration isolation system.

Vibration Isolation System for Driver's Seats with Negative Stiffness (운전자용 의자의 부강성 진동 절연 시스템)

  • Park, Sung-Tae;Lee, Sang-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.114-121
    • /
    • 2010
  • As a vehicle speed increases, more vibration energy is transmitted from chassis to a driver. Current isolation system for the driver's seat by damping control can reduce the transmitted vibration energy near resonance area. But in higher frequency region than natural frequency multiplied by $\sqrt{2}$, the vibration energy transmitted to the driver has a tendency to be increased. Therefore, the method by natural frequency reduction of the system is preferred to increase the effectiveness of the anti-vibration. However, the natural frequency could not be freely reduced due to the nature of the isolation system structure. A new passive suspension system to reduce the natural frequency is proposed. The theoretical analysis and experimental results show better vibration attenuation compared with the current isolation system.

Fault Detection and Isolation of Integrated SDINS/GPS System Using the Generalized Likelihood Ratio (일반공산비 기법을 이용한 SDINS/GPS 통합시스템의 고장 검출 및 격리)

  • Shin, Jeong-Hoon;Lim, You-Chol;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.140-148
    • /
    • 2000
  • This paper presents a fault detection and isolation(FDI) method based on Generalized Likelihood Ratio(GLR) test for the tightly coupled SDINS/CPS system. The GLR test is known to have the capability of detecting an assumed change while estimating its occurrence time and magnitude, and isolating the changing part. Once a fault is detected even if we don't know if the fault occurrs at either INS or GPS, multi-hypothesized GLR scheme performs the fault isolation between INS and GPS, and find which satellite malfunctions. However, in the INS faulty case, it turned out to fail to accomodate the fault isolation between accelerometer and gyroscope due to the coupling effects and a poor observability of the system. Hence, to isolate the INS fault, it needs to change the attitude of the vehicle resulting in enhancing the degree of observability.

  • PDF

Lyapunov-based Semi-active Control of Adaptive Base Isolation System employing Magnetorheological Elastomer base isolators

  • Chen, Xi;Li, Jianchun;Li, Yancheng;Gu, Xiaoyu
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1077-1099
    • /
    • 2016
  • One of the main shortcomings in the current passive base isolation system is lack of adaptability. The recent research and development of a novel adaptive seismic isolator based on magnetorheological elastomer (MRE) material has created an opportunity to add adaptability to base isolation systems for civil structures. The new MRE based base isolator is able to significantly alter its shear modulus or lateral stiffness with the applied magnetic field or electric current, which makes it a competitive candidate to develop an adaptive base isolation system. This paper aims at exploring suitable control algorithms for such adaptive base isolation system by developing a close-loop semi-active control system for a building structure equipped with MRE base isolators. The MRE base isolator is simulated by a numerical model derived from experimental characterization based on the Bouc-Wen Model, which is able to describe the force-displacement response of the device accurately. The parameters of Bouc-Wen Model such as the stiffness and the damping coefficients are described as functions of the applied current. The state-space model is built by analyzing the dynamic property of the structure embedded with MRE base isolators. A Lyapunov-based controller is designed to adaptively vary the current applied to MRE base isolator to suppress the quake-induced vibrations. The proposed control method is applied to a widely used benchmark base-isolated structure by numerical simulation. The performance of the adaptive base isolation system was evaluated through comparison with optimal passive base isolation system and a passive base isolation system with optimized base shear. It is concluded that the adaptive base isolation system with proposed Lyapunov-based semi-active control surpasses the performance of other two passive systems in protecting the civil structures under seismic events.

Application of Hybrid Seismic Isolation System to Realize High Seismic Performance for Low-rise Lightweight Buildings (저층 경량건물의 고성능 내진을 위한 복합면진시스템의 적용)

  • Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.4 no.2
    • /
    • pp.185-192
    • /
    • 2013
  • This study presents application effects of hybrid seismic isolation system to realize high seismic performance for low-rise lightweight buildings through a non-linear analysis and onsite experiments. The complex seismic isolation system applied in this study is a method of mixing sliding bearing and laminated rubber bearing in order to overcome limitation of laminated rubber bearing in increasing natural period of the whole seismic isolation system. As a result of the non-linear analysis, seismic isolation buildings designed with complex seismic isolation system are safe because its maximum response displacement is within allowable design displacement even for a strong earthquake which rarely occurs and its maximum response shear is less than design seismic force. As a result of the onsite experiment, the rigidity of seismic isolation stories corresponds to approximately 95.8% of the design equivalent stiffness value. This indicates that actual properties of the whole seismic isolation system correspond to design values.

The Study of Static and Dynamic Characteristics for a Isolation Rubber Mount using the Complex Stiffness (고무의 복합강성을 이용한 방진 마운트의 정적ㆍ동적 특성에 관한 연구)

  • 권오병;김종연;김영구;한문성;고철수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.927-932
    • /
    • 2001
  • Rubber has high damping and can be formed as various shape according to specific purpose. So, Rubber has widely used as isolation mounts. However, there are still a lot of difficulties in understanding of static and dynamic characteristics of compressed and shear rubber mounts. In this paper, Static characteristics of the rubber isolation mount are observed by the analytical method and FEM. Also dynamic characteristics of rubber mount under compression and shear strain are investigated.

  • PDF

Improved Procedure for Large-scale Isolation of Mitochondrial DNA from Mammalian Tissues

  • Hong, Sung-Soo;Lee, Chung-Choo
    • Animal cells and systems
    • /
    • v.3 no.1
    • /
    • pp.73-78
    • /
    • 1999
  • Although there are several methods for the preparation of mitochondrial DNA (mtDNA) from mammalian tissues, most are relatively long ultracentrifugation or manipulations by a small-scale method. We escribed a rapid method for large-scale extraction of mtDNA from human placental and horse liver tissues. The method is based on the preparation and homogenization of tissues, urification of crude mitochondria by differential centrifugations and isolation of mtDNA by alkaline Iysis. It was improved from Pre-existing methods by replacing some steps with simpler ones and discarding many others. This method gives a high yield of pure mtDNA(approximately 1-5mg from one placenta; ca. 400-600 g wet weight), depending on its sources (fresh tissue gave better results than frozen one). The resulting mtDNA indicated that this method can yield mtDNA in sufficient purity and quantity to identify the direct restriction analysis on agarose gel, random-primed labeling as a probe, and end labeling. Therefore, the method is ideal for obtaining good mtDNA samples to conduct routine restriction fragment length polymorphism (RFLP) analyses of natural populations for genetic studies.

  • PDF

Design of a Antenna with Enhanced Isolation for US-PCS Indoor Repeater (격리도가 향상된 US-PCS 대역 댁내용 중계기 안테나 설계)

  • Ahn Jung-Sun;Lee Jin-Sung;Jung Byung-Woon;Lee Byungje
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.9-18
    • /
    • 2005
  • This paper presents an antenna for US-PCS band indoor repeaters with enhancement of isolation. In common repeaters require an enough isolation to reduce the interferences between transmitted and received signals. Thus, it is investigated to improve front-to-back ratio of IBD(Integrated Balun Dipole) antenna which has a good linear polarization with a cavity or multi-cavity by using polarization diversity and aperture matching method. From the simulated and measured results, the antenna realized by using polarization diversity and aperture matching method has a VSWR below 1.5, gain over 8 dBi and enhanced isolation of 15$\~$24 dB in US-PCS band.

Comparison Between the Dynamic Properties and Noise Isolation Performances for a Floor Impact Isolation Pad (바닥충격음 완충재의 동적특성과 소음저감 성능 비교)

  • Yang, Soo-Young;Lee, Dong-Hoon;Hong, Boung-Kuk;Song, Hwa-Young;Lee, Joo-Wone
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.275-278
    • /
    • 2005
  • In this study, the dynamic properties of a floor impact sound isolation pad expressed in terms of the natural frequency, the dynamic stiffness per unit area and the loss factor are measured by the resonant method. By using the measured dynamic properties, the vibration transmissibility diagram is obtained for each isolation pad, which is compared with the values tested by the impact sound sources at the room in an apartment. From the comparative results, it is found that the noise reduction Performances. of isolation pads are closely connected with the natural frequency and the dynamic stiffness per unit area.

  • PDF