• Title/Summary/Keyword: isolation bearing

Search Result 245, Processing Time 0.023 seconds

Prediction of Long Term Performance and Creep of Laminated Natural Rubber Bearings(NRB) (적층 천연고무 면진장치의 장기성능과 크리프에 대한 예측)

  • Hwang, Kee Tae;Seo, Dae Won;Cho, Sung Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.117-125
    • /
    • 2013
  • Seismic isolation has been considered and utilized in various industries as a way to prevent huge damage on to structures by large earthquakes in various industries. The laminated Laminated rubber bearings is are most frequently used in seismic isolation systems. The structural Structural safety could not be assured unless the performance of the rubber bearing is not guaranteed for the life time of the structure under the consideration that the bearing is a critical structural member to sustain vertical loads in the seismically isolated structure. However, there are few studies on the deterioration problems of rubber bearings during their service life. The long term performance of the rubber bearings was not considered in past designs of seismically isolated structures. This study evaluates the long term performance and creep characteristics of laminated natural rubber bearings that are used in seismically isolated buildings. For the this study, a set of accelerated thermal aging tests and creep tests are were performed on real specimens. The experimental results show that the natural rubber bearings would have a stable change rate of change for durability under severe environmental conditions for a long time.

Comparison of Seismic Responses of Seismically Isolated NPP Containment Structures using Equivalent Linear- and Nonlinear-Lead-Rubber Bearing Modeling (등가선형 및 비선형 납-고무받침 모델을 이용한 면진된 원전구조물의 지진응답의 비교)

  • Lee, Jin Hi;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • In order to perform a soil-isolation-structure interaction analysis of seismically isolated nuclear power plant (NPP) structures, the nonlinear behavior of a seismic isolation system may be converted to an equivalent linear model used in frequency domain analysis. Seismic responses for seismically isolated NPP containment structures subjected to a simple artificial acceleration history and different site class earthquakes are evaluated for the equivalent-linear and nonlinear models that have been applied to lead-rubber bearing (LRB) modeling. It can be observed that the maximum displacements of the equivalent linear model are larger than that of the nonlinear model. From the floor response spectrum analysis for the top of NPP containment structures, it can be observed that the spectral acceleration of an equivalent linear model at about 0.5 Hz frequency is about 2~3 times larger than that of a nonlinear model.

Incorporation preference for rubber-steel bearing isolation in retrofitting existing multi storied building

  • Islam, A.B.M. Saiful;Jumaat, Mohd Zamin;Hussain, Raja Rizwan;Hosen, Md. Akter;Huda, Md. Nazmul
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.503-529
    • /
    • 2015
  • Traditionally, multi-story buildings are designed to provide stiffer structural support to withstand lateral earthquake loading. Introducing flexible elements at the base of a structure and providing sufficient damping is an alternative way to mitigate seismic hazards. These features can be achieved with a device known as an isolator. This paper covers the design of base isolators for multi-story buildings in medium-risk seismicity regions and evaluates the structural responses of such isolators. The well-known tower building for police personnel built in Dhaka, Bangladesh by the Public Works Department (PWD) has been used as a case study to justify the viability of incorporating base isolators. The objective of this research was to establish a simplified model of the building that can be effectively used for dynamic analysis, to evaluate the structural status, and to suggest an alternative option to handle the lateral seismic load. A finite element model was incorporated to understand the structural responses. Rubber-steel bearing (RSB) isolators such as Lead rubber bearing (LRB) and high damping rubber bearing (HDRB) were used in the model to insert an isolator link element in the structural base. The nonlinearities of rubber-steel bearings were considered in detail. Linear static, linear dynamic, and nonlinear dynamic analyses were performed for both fixed-based (FB) and base isolated (BI) buildings considering the earthquake accelerograms, histories, and response spectra of the geological sites. Both the time-domain and frequency-domain approaches were used for dynamic solutions. The results indicated that for existing multi-story buildings, RSB diminishes the muscular amount of structural response compared to conventional non-isolated structures. The device also allows for higher horizontal displacement and greater structural flexibility. The suggested isolation technique is able to mitigate the structural hazard under even strong earthquake vulnerability.

Base isolation performance of a cone-type friction pendulum bearing system

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Sung-Wan;Kim, Nam-Sik
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.227-248
    • /
    • 2015
  • A CFPBS (Cone-type Friction Pendulum Bearing System) was developed to control the acceleration delivered to a structure to prevent the damage and degradation of critical communication equipment during earthquakes. This study evaluated the isolation performance of the CFPBS by numerical analysis. The CFPBS was manufactured in the shape of a cone differenced with the existing FPS (Friction Pendulum System), and a pattern was engraved on the friction surface. The natural frequencies of the CFPBS were evaluated from a free-vibration test with a seismic isolator system consisting of 4 CFPBS. To confirm the earthquake-resistant performance, a numerical analysis program was prepared using the equation of the CFPBS induced from the equations of motion. The equation reported by Tsai for the rolling-type seismic isolation bearings was proposed to design the equation of the CFPBS. Artificial seismic waves that satisfy the maximum earthquake scale of the Korean Building Code-Structural (KBC-2005) were created and verified to review the earthquake-resistant performance of the CFPBS by numerical analysis. The superstructural mass of the CFPBS and the skew angle of friction surface were considered for numerical analysis with El Centro NS, Kobe NS and artificial seismic waves. The CFPBS isolation performance evaluation was based on the numerical analysis results, and comparative analysis was performed between the results from numerical analysis and simplified theoretical equation under the same conditions. The validity of numerical analysis was verified from the shaking table test.

A State-Space Transient Response Analysis of Rotor-Bearing System with Base Excitation (기초가진 로터-베어링 시스템의 상태공간 과도응답해석)

  • 이안성;김병옥;김영철;김영춘
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.669-674
    • /
    • 2004
  • In this study, the analytical method to evaluate the response of rotor-bearing system subjected to base excitation was presented. The equations of motion contain speed dependent gyroscopic terms, base rotation dependent parametric terms and several forcing function terms which depend on linear accelerations, rotational accelerations and a combination of linear and rotational combination. The study of rotor-bearing system excited by its base motion is not only able to predict the rotational performance, but provides the fundamental data for vibration isolation. In order to illustrate transient response, transient response analysis of a practical application sample were performed. The transient response was carried out for the given base excitation by using the state-space Newmark method that incorporates the average velocity concept.

  • PDF

A comparative study on aseismic performances of base isolation systems for multi-span continuous bridge (다경간 연속교에 대한 면진용 교좌장치의 내진성능 비교연구)

  • Park, Kyu-Sik;Lee, Chong-Heon;Lee, In-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.383-390
    • /
    • 2001
  • Various base isolation systems, which are widely used, are compared for aseismic performances of multi-span continuous bridge. They are the P-F, RB, LRB, R-FBI and EDF systems. Sensitivity analyses are carried out to determine the design parameters of various devices. The design parameters, natural period of the isolated bridge and friction coefficient of the bearing, are determined by the reciprocal relationship between displacement and bending moment of the structure. Then the relative effectiveness of the bearings is described. Bridge with the R-FBI system shows the smallest peak displacement of deck whereas bridge with the EDF system shows the smallest peak bending moment of the lower end of pier in numerical examples. Furthermore, the peak responses of bridge with the friction type bearing are less sensitive to substantial variations in the frequency range and intensity of the ground excitation than those with the rubber type bearing.

  • PDF

Static and Dynamic Tests on Laminated Rubber Bearings (적층(積層)고무받침의 정적(靜的) 및 동적(動的) 특성실험(特性實驗))

  • Kim, Nam Sik;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.85-93
    • /
    • 1993
  • Base isolation systems are economic and efficient for the control of structural vibration. In this study, the base isolators of LRB(laminated rubber bearing) type which have been generally used are fabricated and tested. From the static and dynamic tests, the characteristics of the base isolators, considering strain-hardening, hysteretic damping and horizontal stiffnesses, etc., are verified and particularly the feasibility as base isolation devices is discussed. Consequently, the test results are compared with the analytical ones that are derived from idealization as a bilinear model.

  • PDF

Shaking Table Test of the Model of Five-story Stone Pagoda of Sang-Gye-Sa Mounted on Base Isolation Systems (쌍계사 오층석탑모델에 대한 지진격리효과 진동대실험)

  • 김재관;이원주;김영중;김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.331-338
    • /
    • 2001
  • Seismic performances of the base isolated model of Five Story Stone Pagoda were studied through shaking table tests. Friction pendulum system (FPS), Pure-friction system with laminated rubber bearing (LRB) and Ball with rubber bearing were selected fur the comparison of performances. Performances of specially designed isolation systems were tested dynamically using shaking table. The test results of isolated model are compared with those of fixed base model. Compared with fixed base model, the isolated model showed that it could withstand much higer intensity of earthquake motion. The Effective Peak Ground Acceleration (EPGA) value of isolated model when the top component tipped over was above twice of that value in case of fixed base model. According to the additional test results, the lower value of coefficient of friction than that of common frictional base isolation systems is more effective to protect the piled multi-block system of Pagoda against moderate intesity of ground motion.

  • PDF

Experimental Study on Floor Isolation of Main Control Room of Nuclear Power Plant using LRB (Lead Rubber Bearing) (납-고무 베어링(LRB) 면진시스템을 적용한 원전주제어실의 진동대 실험)

  • Lee, Kyung-Jin;Ham, Kyung-Won;Suh, Yong-Pyo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.429-436
    • /
    • 2005
  • In this study, we made two types of main control room floor systems (Type I, Type II) and several shaking table tests with and without isolation system were conducted to evaluate floor isolation effectiveness of LRB(Lead Rubber Bearing). Both type showed large difference according to input earthquake signals, but showed little difference according to floor type. It is required to make LRB of which design frequency is below 1Hz when applied to main control room of NPP, but considering much difficulties in making such LRB, it is recommended that consideration should be taken into account when applied to main control room of NPP.

  • PDF

Shaking table experiment on a steel storage tank with multiple friction pendulum bearings

  • Zhang, Ruifu;Weng, Dagen;Ge, Qingzi
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.875-887
    • /
    • 2014
  • The aim of the shaking table experiment is to verify the isolation effect of a storage liquid tank with multiple friction pendulum bearings. A 1:20 scale model of a real storage liquid tank that is widely used in the petroleum industry was examined by the shaking table test to compare its anchored base and isolated base. The seismic response of the tank was assessed by employing the time history input. The base acceleration, wave height and tank wall stress were used to evaluate the isolation effect. Finally, the influences of the bearing performance that characterizes the isolated tank, such as the friction force and residual displacement, were discussed.